L_1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry

We survey connections between the theory of bi-Lipschitz embeddings and the Sparsest Cut Problem in combinatorial optimization. The story of the Sparsest Cut Problem is a striking example of the deep interplay between analysis, geometry, and probability on the one hand, and computational issues in discrete mathematics on the other. We explain how the key ideas evolved over the past 20 years, emphasizing the interactions with Banach space theory, geometric measure theory, and geometric group theory. As an important illustrative example, we shall examine recently established connections to the the structure of the Heisenberg group, and the incompatibility of its Carnot-Carath\'eodory geometry with the geometry of the Lebesgue space $L_1$.

[1]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .

[2]  J. M. Sek On embedding trees into uniformly convex Banach spaces , 1999 .

[3]  Stefan Heinrich,et al.  Ultraproducts in Banach space theory. , 1980 .

[4]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[5]  V. Schroeder,et al.  Embedding of Hyperbolic Spaces in the Product of Trees , 2003 .

[6]  Assaf Naor,et al.  The Euclidean Distortion of the Lamplighter Group , 2007, Discret. Comput. Geom..

[7]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[8]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[9]  P. Enflo On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .

[10]  P. Wojtaszczyk Banach Spaces For Analysts: C ( K )-spaces , 1991 .

[11]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[12]  James R. Lee,et al.  Fréchet Embeddings of Negative Type Metrics , 2007, Discret. Comput. Geom..

[13]  Y. Rabani,et al.  Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.

[14]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[15]  N. Aronszajn,et al.  Differentiability of Lipschitzian mappings between Banach spaces , 1976 .

[16]  Stephen Semmes,et al.  On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .

[17]  Luca Capogna,et al.  The geometric Sobolev embedding for vector fields and the isoperimetric inequality , 1994 .

[18]  David Avis,et al.  The cut cone, L1 embeddability, complexity, and multicommodity flows , 1991, Networks.

[19]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[20]  F. S. Cassano,et al.  On the structure of finite perimeter sets in step 2 Carnot groups , 2003 .

[21]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[22]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[23]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[24]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[25]  Bruce Kleiner,et al.  Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.

[26]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[27]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[28]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[29]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[30]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[31]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[32]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[33]  Bruce Kleiner,et al.  Generalized differentiation and bi-Lipschitz nonembedding in L1⁎ , 2006 .

[34]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[35]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[36]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[37]  R. Ravi,et al.  Approximation through multicommodity flow , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[38]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[39]  Sanjeev Khanna,et al.  Polynomial flow-cut gaps and hardness of directed cut problems , 2007, STOC '07.

[40]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[41]  Goulnara Arzhantseva,et al.  Compression functions of uniform embeddings of groups into Hilbert and Banach spaces , 2006 .

[42]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[43]  Gideon Schechtman,et al.  Affine Approximation of Lipschitz Functions and Nonlinear Quotients , 1999 .

[44]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[45]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[46]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[47]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[48]  Subhash Khot Inapproximability of NP-complete Problems, Discrete Fourier Analysis, and Geometry , 2011 .

[49]  Keith Ball Isometric Embedding in lp-spaces , 1990, Eur. J. Comb..

[50]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[51]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[52]  Yuri Rabinovich,et al.  On Average Distortion of Embedding Metrics into the Line , 2008, Discret. Comput. Geom..

[53]  Peter W. Jones Lipschitz and bi-Lipschitz Functions. , 1988 .

[54]  Bruce Kleiner,et al.  On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .

[55]  J. Bourgain,et al.  Remarks on the extension of lipschitz maps defined on discrete sets and uniform homeomorphisms , 1987 .

[56]  Romain Tessera Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces , 2007 .

[57]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[58]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[59]  Robert Krauthgamer,et al.  Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.

[60]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[61]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[62]  Yuval Rabani,et al.  On the Hardness of Approximating Multicut and Sparsest-Cut , 2005, Computational Complexity Conference.

[63]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[64]  Assaf Naor,et al.  Compression bounds for Lipschitz maps from the Heisenberg group to L1 , 2009, ArXiv.

[65]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[66]  Shuchi Chawla,et al.  Sparsest Cut , 2008, Encyclopedia of Algorithms.

[67]  A. Sinclair,et al.  Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs , 2005 .

[68]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[69]  Bruno Franchi,et al.  Rectifiability and perimeter in the Heisenberg group , 2001 .

[70]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[71]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[72]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[73]  Scott Pauls The large scale geometry of nilpotent Lie groups , 1999 .