暂无分享,去创建一个
[1] C. Morawetz. The Courant Institute of Mathematical Sciences , 1988 .
[2] J. M. Sek. On embedding trees into uniformly convex Banach spaces , 1999 .
[3] Stefan Heinrich,et al. Ultraproducts in Banach space theory. , 1980 .
[4] Patrice Assouad. Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .
[5] V. Schroeder,et al. Embedding of Hyperbolic Spaces in the Product of Trees , 2003 .
[6] Assaf Naor,et al. The Euclidean Distortion of the Lamplighter Group , 2007, Discret. Comput. Geom..
[7] James R. Lee,et al. On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.
[8] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[9] P. Enflo. On the nonexistence of uniform homeomorphisms betweenLp-spaces , 1970 .
[10] P. Wojtaszczyk. Banach Spaces For Analysts: C ( K )-spaces , 1991 .
[11] P. Pansu,et al. Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .
[12] James R. Lee,et al. Fréchet Embeddings of Negative Type Metrics , 2007, Discret. Comput. Geom..
[13] Y. Rabani,et al. Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.
[14] Nisheeth K. Vishnoi,et al. The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.
[15] N. Aronszajn,et al. Differentiability of Lipschitzian mappings between Banach spaces , 1976 .
[16] Stephen Semmes,et al. On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .
[17] Luca Capogna,et al. The geometric Sobolev embedding for vector fields and the isoperimetric inequality , 1994 .
[18] David Avis,et al. The cut cone, L1 embeddability, complexity, and multicommodity flows , 1991, Networks.
[19] Anupam Gupta,et al. Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.
[20] F. S. Cassano,et al. On the structure of finite perimeter sets in step 2 Carnot groups , 2003 .
[21] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[22] Graham A. Niblo,et al. Asymptotic invariants of infinite groups , 1993 .
[23] Robert Krauthgamer,et al. Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[24] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[25] Bruce Kleiner,et al. Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.
[26] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[27] Frank Thomson Leighton,et al. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.
[28] J. Bourgain. The metrical interpretation of superreflexivity in banach spaces , 1986 .
[29] P. Wojtaszczyk. Banach Spaces For Analysts: Preface , 1991 .
[30] J. Wells,et al. Embeddings and Extensions in Analysis , 1975 .
[31] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[32] J. Cheeger,et al. Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.
[33] Bruce Kleiner,et al. Generalized differentiation and bi-Lipschitz nonembedding in L1⁎ , 2006 .
[34] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[35] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[36] James R. Lee,et al. Euclidean distortion and the sparsest cut , 2005, STOC '05.
[37] R. Ravi,et al. Approximation through multicommodity flow , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[38] Nisheeth K. Vishnoi,et al. Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.
[39] Sanjeev Khanna,et al. Polynomial flow-cut gaps and hardness of directed cut problems , 2007, STOC '07.
[40] Satish Rao,et al. Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.
[41] Goulnara Arzhantseva,et al. Compression functions of uniform embeddings of groups into Hilbert and Banach spaces , 2006 .
[42] Farhad Shahrokhi,et al. The maximum concurrent flow problem , 1990, JACM.
[43] Gideon Schechtman,et al. Affine Approximation of Lipschitz Functions and Nonlinear Quotients , 1999 .
[44] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[45] Subhash Khot. On the power of unique 2-prover 1-round games , 2002, STOC '02.
[46] D. Burago,et al. A Course in Metric Geometry , 2001 .
[47] Assaf Naor,et al. A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[48] Subhash Khot. Inapproximability of NP-complete Problems, Discrete Fourier Analysis, and Geometry , 2011 .
[49] Keith Ball. Isometric Embedding in lp-spaces , 1990, Eur. J. Comb..
[50] David B. Shmoys,et al. Cut problems and their application to divide-and-conquer , 1996 .
[51] Yuval Rabani,et al. An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..
[52] Yuri Rabinovich,et al. On Average Distortion of Embedding Metrics into the Line , 2008, Discret. Comput. Geom..
[53] Peter W. Jones. Lipschitz and bi-Lipschitz Functions. , 1988 .
[54] Bruce Kleiner,et al. On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .
[55] J. Bourgain,et al. Remarks on the extension of lipschitz maps defined on discrete sets and uniform homeomorphisms , 1987 .
[56] Romain Tessera. Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces , 2007 .
[57] J. Krivine,et al. Lois stables et espaces $L^p$ , 1967 .
[58] Ryan O'Donnell,et al. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..
[59] Robert Krauthgamer,et al. Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.
[60] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[61] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[62] Yuval Rabani,et al. On the Hardness of Approximating Multicut and Sparsest-Cut , 2005, Computational Complexity Conference.
[63] Yuval Rabani,et al. Improved lower bounds for embeddings into L1 , 2006, SODA '06.
[64] Assaf Naor,et al. Compression bounds for Lipschitz maps from the Heisenberg group to L1 , 2009, ArXiv.
[65] M. Gromov. Carnot-Carathéodory spaces seen from within , 1996 .
[66] Shuchi Chawla,et al. Sparsest Cut , 2008, Encyclopedia of Algorithms.
[67] A. Sinclair,et al. Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs , 2005 .
[68] Nathan Linial. Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.
[69] Bruno Franchi,et al. Rectifiability and perimeter in the Heisenberg group , 2001 .
[70] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[71] James R. Lee,et al. Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[72] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[73] Scott Pauls. The large scale geometry of nilpotent Lie groups , 1999 .