EPOS: Estimating 6D Pose of Objects With Symmetries

We present a new method for estimating the 6D pose of rigid objects with available 3D models from a single RGB input image. The method is applicable to a broad range of objects, including challenging ones with global or partial symmetries. An object is represented by compact surface fragments which allow handling symmetries in a systematic manner. Correspondences between densely sampled pixels and the fragments are predicted using an encoder-decoder network. At each pixel, the network predicts: (i) the probability of each object's presence, (ii) the probability of the fragments given the object's presence, and (iii) the precise 3D location on each fragment. A data-dependent number of corresponding 3D locations is selected per pixel, and poses of possibly multiple object instances are estimated using a robust and efficient variant of the PnP-RANSAC algorithm. In the BOP Challenge 2019, the method outperforms all RGB and most RGB-D and D methods on the T-LESS and LM-O datasets. On the YCB-V dataset, it is superior to all competitors, with a large margin over the second-best RGB method. Source code is at: cmp.felk.cvut.cz/epos.

[1]  Nassir Navab,et al.  Deep Model-Based 6D Pose Refinement in RGB , 2018, ECCV.

[2]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[3]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[4]  Slobodan Ilic,et al.  DPOD: 6D Pose Object Detector and Refiner , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[5]  Pascal Fua,et al.  Segmentation-Driven 6D Object Pose Estimation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[7]  Jiri Matas,et al.  Graph-Cut RANSAC , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Vincent Lepetit,et al.  BB8: A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the 3D Poses of Challenging Objects without Using Depth , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[10]  Nassir Navab,et al.  Model globally, match locally: Efficient and robust 3D object recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Eric Brachmann,et al.  Learning Analysis-by-Synthesis for 6D Pose Estimation in RGB-D Images , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Lourdes Agapito,et al.  Detect Globally, Label Locally: Learning Accurate 6-DOF Object Pose Estimation by Joint Segmentation and Coordinate Regression , 2018, IEEE Robotics and Automation Letters.

[13]  Yi Li,et al.  DeepIM: Deep Iterative Matching for 6D Pose Estimation , 2018, International Journal of Computer Vision.

[14]  Eric Brachmann,et al.  Learning 6D Object Pose Estimation Using 3D Object Coordinates , 2014, ECCV.

[15]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Weijia Zhou,et al.  DeepHMap++: Combined Projection Grouping and Correspondence Learning for Full DoF Pose Estimation , 2019, Sensors.

[17]  Eric Brachmann,et al.  BOP: Benchmark for 6D Object Pose Estimation , 2018, ECCV.

[18]  Eric Brachmann,et al.  iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects , 2017, ACCV.

[19]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[20]  Manolis I. A. Lourakis,et al.  T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-Less Objects , 2017, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[21]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[22]  Silvio Savarese,et al.  DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jiri Matas,et al.  Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[24]  Xiaowei Zhou,et al.  6-DoF object pose from semantic keypoints , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[26]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[27]  Siddhartha S. Srinivasa,et al.  The MOPED framework: Object recognition and pose estimation for manipulation , 2011, Int. J. Robotics Res..

[28]  Vincent Lepetit,et al.  Robust 3D Object Tracking from Monocular Images Using Stable Parts , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Vincent Lepetit,et al.  Going Further with Point Pair Features , 2016, ECCV.

[30]  Dieter Fox,et al.  PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes , 2017, Robotics: Science and Systems.

[31]  Gregory D. Hager,et al.  A Unified Framework for Multi-View Multi-Class Object Pose Estimation , 2018, ECCV.

[32]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[33]  Joel A. Hesch,et al.  A Direct Least-Squares (DLS) method for PnP , 2011, 2011 International Conference on Computer Vision.

[34]  Hujun Bao,et al.  PVNet: Pixel-Wise Voting Network for 6DoF Pose Estimation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Sanja Fidler,et al.  Pose Estimation for Objects with Rotational Symmetry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[36]  Giorgia Pitteri,et al.  On Object Symmetries and 6D Pose Estimation from Images , 2019, 2019 International Conference on 3D Vision (3DV).

[37]  M. M. Siddiqui,et al.  Robust Estimation of Location , 1967 .

[38]  Pascal Fua,et al.  Real-Time Seamless Single Shot 6D Object Pose Prediction , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[39]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[40]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[41]  Vincent Lepetit,et al.  Making Deep Heatmaps Robust to Partial Occlusions for 3D Object Pose Estimation , 2018, ECCV.

[42]  Tae-Kyun Kim,et al.  Multi-Task Deep Networks for Depth-Based 6D Object Pose and Joint Registration in Crowd Scenarios , 2018, BMVC.

[43]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[44]  Timothy Patten,et al.  Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Roland Siegwart,et al.  A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation , 2011, CVPR 2011.

[46]  Roberto Brunelli,et al.  Template Matching Techniques in Computer Vision: Theory and Practice , 2009 .

[47]  Nassir Navab,et al.  SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[48]  Philip H. S. Torr,et al.  Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting , 2002, International Journal of Computer Vision.

[49]  Vincent Lepetit,et al.  Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes , 2012, ACCV.

[50]  Nassir Navab,et al.  Explaining the Ambiguity of Object Detection and 6D Pose From Visual Data , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[51]  Zoltan-Csaba Marton,et al.  Augmented Autoencoders: Implicit 3D Orientation Learning for 6D Object Detection , 2019, International Journal of Computer Vision.

[52]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[53]  Markus Ulrich,et al.  Introducing MVTec ITODD — A Dataset for 3D Object Recognition in Industry , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[54]  Manolis I. A. Lourakis,et al.  Detection and fine 3D pose estimation of texture-less objects in RGB-D images , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[55]  Iasonas Kokkinos,et al.  DensePose: Dense Human Pose Estimation in the Wild , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[56]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[57]  Xavier Lladó,et al.  A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range Data , 2018, Sensors.

[58]  Federico Tombari,et al.  BOLD Features to Detect Texture-less Objects , 2013, 2013 IEEE International Conference on Computer Vision.

[59]  Dieter Fox,et al.  Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects , 2018, CoRL.

[60]  Vincent Lepetit,et al.  On Pre-Trained Image Features and Synthetic Images for Deep Learning , 2017, ECCV Workshops.

[61]  Yuri Boykov,et al.  Energy-Based Geometric Multi-model Fitting , 2012, International Journal of Computer Vision.

[62]  Xiangyang Ji,et al.  CDPN: Coordinates-Based Disentangled Pose Network for Real-Time RGB-Based 6-DoF Object Pose Estimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[63]  Stepán Obdrzálek,et al.  On Evaluation of 6D Object Pose Estimation , 2016, ECCV Workshops.

[64]  Carolina Raposo,et al.  Using 2 point+normal sets for fast registration of point clouds with small overlap , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[65]  Vibhav Vineet,et al.  Photorealistic Image Synthesis for Object Instance Detection , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[66]  Fernando Fonseca,et al.  Deep segmentation leverages geometric pose estimation in computer-aided total knee arthroplasty , 2019, Healthcare technology letters.

[67]  Three-Dimensional Proper and Improper Rotation Matrices , 2014 .

[68]  Tae-Kyun Kim,et al.  Latent-Class Hough Forests for 3D Object Detection and Pose Estimation , 2014, ECCV.