A generalization of the Bott-Duffin inverse and its applications

The ‘constrained inverse’ was introduced by Bott and Duffin in 1953. Since then various generalizations have arisen. In this paper, we propose a generalization of the Bott–Duffin inverse. Applications of the projection methods for solving sparse linear systems, the truncated methods for solving least squares problems, and solvers for generalized saddle point problems are also presented. The relationships with other generalized Bott–Duffin inverses are explored. The results indicate that the generalized Bott–Duffin inverse may be a useful tool in matrix computations. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  Guoliang Chen,et al.  Perturbation theory for the generalized Bott-Duffin inverse and its applications , 2002, Appl. Math. Comput..

[2]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[3]  Yong-Lin Chen Representations and cramer rules for the solution of a restricted Matrix Equation , 1993 .

[4]  Chen Yonglin,et al.  The generalized Bott-Duffin inverse and its applications , 1990 .

[5]  P. Wedin Perturbation theory for pseudo-inverses , 1973 .

[6]  Per Christian Hansen,et al.  Accuracy of TSVD solutions computed from rank-revealing decompositions , 1995 .

[7]  Guoliang Chen,et al.  The expression of the generalized Bott-Duffin inverse and its perturbation theory , 2002, Appl. Math. Comput..

[8]  J. L. Rigal,et al.  On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.

[9]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[10]  R. Duffin,et al.  On the algebra of networks , 1953 .

[11]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[12]  HansenPer Christian The truncated SVD as a method for regularization , 1987 .

[13]  G. W. Stewart,et al.  An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..

[14]  Hua Xiang,et al.  On Normwise Structured Backward Errors for Saddle Point Systems , 2007, SIAM J. Matrix Anal. Appl..

[15]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .

[16]  Ji-guang Sun Backward perturbation analysis of certain characteristic subspaces , 1993 .

[17]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[18]  N. Minamide,et al.  A Restricted Pseudoinverse and Its Application to Constrained Minima , 1970 .

[19]  Wei Xu,et al.  Condition number of Bott-Duffin inverse and their condition numbers , 2003, Appl. Math. Comput..

[20]  Yimin Wei,et al.  A note on constraint preconditioners for nonsymmetric saddle point problems , 2007, Numer. Linear Algebra Appl..

[21]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Bin Deng,et al.  A note on the generalized Bott-Duffin inverse , 2007, Appl. Math. Lett..

[24]  James R. Bunch,et al.  Perturbation theory for orthogonal projection methods with applications to least squares and total least squares , 1996 .

[25]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[26]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[27]  Hua Xiang,et al.  Perturbation analysis of generalized saddle point systems , 2006 .

[28]  Perturbation Analysis of the Generalized Bott-Duffin Inverse of L -zero Matrices , 2003 .

[29]  Yimin Wei,et al.  Further note on constraint preconditioning for nonsymmetric indefinite matrices , 2004, Appl. Math. Comput..