Minimum distance of error correcting codes versus encoding complexity, symmetry, and pseudorandomness

We study the minimum distance of binary error correcting codes from the following perspectives: (1) The problem of deriving bounds on the minimum distance of a code given constraints on the computational complexity of its encoder. (2) The minimum distance of linear codes that are symmetric in the sense of being invariant under the action of a group on the bits of the codewords. (3) The derandomization capabilities of probability measures on the Hamming cube based on binary linear codes with good distance properties, and their variations. Highlights of our results include: (1) A general theorem that asserts that if the encoder uses linear time and sub-linear memory in the general binary branching program model, then the minimum distance of the code cannot grow linearly with the block length when the rate is nonvanishing. (2) New upper bounds on the minimum distance of various types of Turbo-like codes. (3) The first ensemble of asymptotically good Turbo-like codes. We prove that depth-three serially concatenated Turbo codes can be asymptotically good. (4) The first ensemble of asymptotically good codes that are ideals in the group algebra of a group. We argue that, for infinitely many block lengths, a random ideal in the group algebra of the dihedral group is an asymptotically good rate half code with a high probability. (5) An explicit rate-half code whose codewords are in one-to-one correspondence with special hyperelliptic curves over a finite field of prime order where the number of zeros of a codeword corresponds to the number of rational points. (6) A sharp O( k−1/2) upper bound on the probability that a random binary string generated according to a k-wise independent probability measure has any given weight. (7) An assertion saying that any sufficiently log-wise independent probability measure looks random to all polynomially small read-once DNF formulas. (8) An elaborate study of the problem of derandomizability of AC0 by any sufficiently polylog-wise independent probability measure. (9) An elaborate study of the problem of approximability of high-degree parity functions on binary linear codes by low-degree polynomials with coefficients in fields of odd characteristics. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  M. Burrow Representation Theory of Finite Groups , 1965 .

[2]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[3]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[4]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[5]  Michael Luby,et al.  On deterministic approximation of DNF , 2005, Algorithmica.

[6]  Jørn Justesen,et al.  Class of constructive asymptotically good algebraic codes , 1972, IEEE Trans. Inf. Theory.

[7]  Eyal Kushilevitz,et al.  Learning Decision Trees Using the Fourier Sprectrum (Extended Abstract) , 1991, Symposium on the Theory of Computing.

[8]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[9]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[10]  Sanjoy K. Mitter,et al.  Endcoding complexity versus minimum distance , 2005, IEEE Transactions on Information Theory.

[11]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[13]  Avi Wigderson,et al.  Expanders In Group Algebras , 2004, Comb..

[14]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[15]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[17]  Paul M. B. Vitányi,et al.  Randomness , 2001, ArXiv.

[18]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computations , 1990, STOC '90.

[19]  Paul H. Siegel,et al.  The serial concatenation of rate-1 codes through uniform random interleavers , 2003, IEEE Trans. Inf. Theory.

[20]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[21]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[22]  F. Torres,et al.  Algebraic Curves over Finite Fields , 1991 .

[23]  F. Pollara,et al.  Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.

[24]  E. J. Weldon,et al.  Some Results on Quasi-Cyclic Codes , 1969, Inf. Control..

[25]  R. Urbanke,et al.  On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[26]  李幼升,et al.  Ph , 1989 .

[27]  Robert J. McEliece,et al.  RA Codes Achieve AWGN Channel Capacity , 1999, AAECC.

[28]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[29]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, Comb..

[30]  Avi Wigderson,et al.  Expanders from symmetric codes , 2002, STOC '02.

[31]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[32]  P. Piret An upper bound on the weight distribution of some systematic codes , 1985, IEEE Trans. Inf. Theory.

[33]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[34]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[35]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[36]  Rudolf Lide,et al.  Finite fields , 1983 .

[37]  Branka Vucetic,et al.  Turbo Codes: Principles and Applications , 2000 .

[38]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[39]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .

[40]  D. Spielman,et al.  Expander codes , 1996 .

[41]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[42]  H. Ward Quadratic residue codes and symplectic groups , 1974 .

[43]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[44]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[45]  B. R. McDonald Finite Rings With Identity , 1974 .

[46]  Carlos J. Moreno,et al.  Algebraic curves over finite fields: Frontmatter , 1991 .

[47]  Miklós Ajtai,et al.  Determinism versus non-determinism for linear time RAMs (extended abstract) , 1999, STOC '99.

[48]  M. Tsfasman,et al.  Modular curves, Shimura curves, and Goppa codes, better than Varshamov‐Gilbert bound , 1982 .

[49]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[50]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[51]  Daniel A. Spielman Linear-time encodable and decodable error-correcting codes , 1996, IEEE Trans. Inf. Theory.

[52]  Michael Horstein,et al.  Review of 'Low-Density Parity-Check Codes' (Gallager, R. G.; 1963) , 1964, IEEE Transactions on Information Theory.

[53]  C. Curtis,et al.  Representation theory of finite groups and associated algebras , 1962 .

[54]  James Aspnes,et al.  The expressive power of voting polynomials , 1994, Comb..

[55]  Dana Ron,et al.  Chinese remaindering with errors , 2000, IEEE Trans. Inf. Theory.

[56]  Noam D. Elkies,et al.  Excellent nonlinear codes from modular curves , 2001, STOC 2001.

[57]  Jehoshua Bruck,et al.  Polynomial threshold functions, AC functions and spectrum norms , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[58]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[59]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[60]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[61]  Daniel A. Spielman,et al.  The perceptron strikes back , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[62]  Avi Wigderson,et al.  Deterministic simulation of probabilistic constant depth circuits , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[63]  Marco Breiling,et al.  A logarithmic upper bound on the minimum distance of turbo codes , 2004, IEEE Transactions on Information Theory.

[64]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.