Convergence of Fundamental Limitations in Feedback Communication, Estimation, and Feedback Control over Gaussian Channels

In this paper, we establish the connections of the fundamental limitations in feedback communication, estimation, and feedback control over Gaussian channels, from a unifying perspective for information, estimation, and control. The optimal feedback communication system over a Gaussian necessarily employs the Kalman filter (KF) algorithm, and hence can be transformed into an estimation system and a feedback control system over the same channel. This follows that the information rate of the communication system is alternatively given by the decay rate of the Cramer-Rao bound (CRB) of the estimation system and by the Bode integral (BI) of the control system. Furthermore, the optimal tradeoff between the channel input power and information rate in feedback communication is alternatively characterized by the optimal tradeoff between the (causal) one-step prediction mean-square error (MSE) and (anti-causal) smoothing MSE (of an appropriate form) in estimation, and by the optimal tradeoff between the regulated output variance with causal feedback and the disturbance rejection measure (BI or degree of anti-causality) in feedback control. All these optimal tradeoffs have an interpretation as the tradeoff between causality and anti-causality. Utilizing and motivated by these relations, we provide several new results regarding the feedback codes and information theoretic characterization of KF. Finally, the extension of the finite-horizon results to infinite horizon is briefly discussed under specific dimension assumptions (the asymptotic feedback capacity problem is left open in this paper).

[1]  Thomas Kailath,et al.  A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.

[2]  Sekhar Tatikonda,et al.  On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory , 2007, IEEE Transactions on Information Theory.

[3]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[4]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[5]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[6]  Shunsuke Ihara,et al.  Capacity of discrete time Gaussian channel with and without feedback, II , 1988 .

[7]  Thierry E. Klein,et al.  Capacity of Gaussian noise channels with side information and feedback , 2001 .

[8]  Robert G. Gallager,et al.  Variations on a Theme by Schalkwijk and Kailath , 2008, IEEE Transactions on Information Theory.

[9]  Illtyd Trethowan Causality , 1938 .

[10]  J. Schalkwijk,et al.  Center-of-gravity information feedback , 1968, IEEE Trans. Inf. Theory.

[11]  Jialing Liu,et al.  Fundamental limits in Gaussian channels with feedback: confluence of communication, estimation, and control , 2006 .

[12]  Munther A. Dahleh,et al.  Feedback Control in the Presence of Noisy Channels: “Bode-Like” Fundamental Limitations of Performance , 2008, IEEE Transactions on Automatic Control.

[13]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[14]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[15]  E. Ordentlich,et al.  A class of optimal coding schemes for moving average additive Gaussian noise channels with feedback , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[16]  Meir Feder,et al.  Optimal Feedback Communication Via Posterior Matching , 2009, IEEE Transactions on Information Theory.

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[19]  Nicola Elia,et al.  Achieving the Stationary Feedback Capacity for Gaussian Channels , 2005 .

[20]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[21]  Massimo Franceschetti,et al.  LQG Control Approach to Gaussian Broadcast Channels With Feedback , 2010, IEEE Transactions on Information Theory.

[22]  G. David Forney,et al.  On the role of MMSE estimation in approaching the information-theoretic limits of linear Gaussian channels: Shannon meets Wiener , 2004, ArXiv.

[23]  Massimo Franceschetti,et al.  Control-Theoretic Approach to Communication With Feedback , 2012, IEEE Transactions on Automatic Control.

[24]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[25]  Sekhar Tatikonda,et al.  Capacity-achieving feedback scheme for Markov channels with channel state information , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[26]  Jialing Liu,et al.  Writing on Dirty Paper with Feedback , 2006, 2006 IEEE International Conference on Networking, Sensing and Control.

[27]  Sekhar Tatikonda,et al.  The Capacity of Channels With Feedback , 2006, IEEE Transactions on Information Theory.

[28]  Pablo A. Iglesias,et al.  Tradeoffs in linear time-varying systems: an analogue of Bode's sensitivity integral , 2001, Autom..

[29]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[30]  Munther A. Dahleh,et al.  Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information , 2005, IEEE Transactions on Automatic Control.

[31]  Young Han Kim,et al.  Feedback capacity of the first-order moving average Gaussian channel , 2004, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[32]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[33]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[34]  T. Kailath,et al.  A coding scheme for additive noise channels with feedback, Part I: No bandwith constraint , 1998 .

[35]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[36]  Sanjoy K. Mitter,et al.  A Variational Approach to Nonlinear Estimation , 2003, SIAM J. Control. Optim..

[37]  Jim K. Omura,et al.  Optimum linear transmission of analog data for channels with feedback , 1968, IEEE Trans. Inf. Theory.

[38]  Young-Han Kim,et al.  Feedback Capacity of Stationary Gaussian Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[39]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[40]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[41]  Meir Feder,et al.  On a capacity achieving scheme for the colored Gaussian channel with feedback , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[42]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[43]  Pablo A. Iglesias,et al.  Nonlinear extension of Bode's integral based on an information-theoretic interpretation , 2003, Syst. Control. Lett..

[44]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[45]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[46]  Nigel J. Newton,et al.  Information and Entropy Flow in the Kalman–Bucy Filter , 2005 .

[47]  Kenjiro Yanagi,et al.  Necessary and sufficient condition for capacity of the discrete time Gaussian channel to be increased by feedback , 1992, IEEE Trans. Inf. Theory.

[48]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[49]  Anant Sahai,et al.  Anytime information theory , 2001 .

[50]  Lawrence H. Ozarow,et al.  Random coding for additive Gaussian channels with feedback , 1990, IEEE Trans. Inf. Theory.

[51]  Young-Han Kim Feedback Capacity of Stationary Gaussian Channels , 2006, ISIT.

[52]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[53]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[54]  J. Pieter M. Schalkwijk,et al.  A coding scheme for additive noise channels with feedback-II: Band-limited signals , 1966, IEEE Trans. Inf. Theory.

[55]  Richard H. Middleton,et al.  Feedback Stabilization Over a First Order Moving Average Gaussian Noise Channel , 2009, IEEE Transactions on Automatic Control.

[56]  S. Butman Linear feedback rate bounds for regressive channels , 1976 .

[57]  Henry L. Weidemann Entropy Analysis of Feedback Control Systems1 1The research for this paper was supported in part by funds from the United States Air Force Office of Scientific Research under AFOSR Grant 699-67. , 1969 .

[58]  Thomas M. Cover,et al.  Gaussian feedback capacity , 1989, IEEE Trans. Inf. Theory.

[59]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[60]  K. Loparo,et al.  Optimal state estimation for stochastic systems: an information theoretic approach , 1997, IEEE Trans. Autom. Control..

[61]  Kyle A. Gallivan,et al.  Singular Riccati equations stabilizing large-scale systems , 2006 .

[62]  Stanley A. Butman,et al.  A general formulation of linear feedback communication systems with solutions , 1969, IEEE Trans. Inf. Theory.