Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization

We consider the problem of robust optimization within the well-established Bayesian optimization (BO) framework. While BO is intrinsically robust to noisy evaluations of the objective function, standard approaches do not consider the case of uncertainty about the input parameters. In this paper, we propose Noisy-Input Entropy Search (NES), a novel information-theoretic acquisition function that is designed to find robust optima for problems with both input and measurement noise. NES is based on the key insight that the robust objective in many cases can be modeled as a Gaussian process, however, it cannot be observed directly. We evaluate NES on several benchmark problems from the optimization literature and from engineering. The results show that NES reliably finds robust optima, outperforming existing methods from the literature on all benchmarks.

[1]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[2]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[3]  Ruben Martinez-Cantin,et al.  Practical Bayesian optimization in the presence of outliers , 2017, AISTATS.

[4]  Alexandre Bernardino,et al.  Unscented Bayesian optimization for safe robot grasping , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  Georgia Perakis,et al.  A Robust Optimization Approach to Dynamic Pricing and Inventory Control with no Backorders , 2006, Math. Program..

[6]  D. Dennis,et al.  A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[7]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[8]  Fabio Tozeto Ramos,et al.  Bayesian optimisation under uncertain inputs , 2019, AISTATS.

[9]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[10]  Zi Wang,et al.  Max-value Entropy Search for Efficient Bayesian Optimization , 2017, ICML.

[11]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[12]  Dimitris Bertsimas,et al.  Robust Optimization for Unconstrained Simulation-Based Problems , 2010, Oper. Res..

[13]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[14]  Tom Heskes,et al.  Bayesian Monte Carlo for the Global Optimization of Expensive Functions , 2010, ECAI.

[15]  Smith,et al.  Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications , 2007 .

[16]  Nando de Freitas,et al.  Heteroscedastic Treed Bayesian Optimisation , 2014, ArXiv.

[17]  Ibrahim A. Ahmad,et al.  A nonparametric estimation of the entropy for absolutely continuous distributions (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[18]  Volkan Cevher,et al.  Adversarially Robust Optimization with Gaussian Processes , 2018, NeurIPS.

[19]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[20]  Farrokh Mistree,et al.  A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .

[21]  R. Herbrich On Gaussian Expectation Propagation , 2005 .

[22]  Brahim Chaib-draa,et al.  Learning Gaussian Process Models from Uncertain Data , 2009, ICONIP.

[23]  Antoine Cully,et al.  Robots that can adapt like animals , 2014, Nature.

[24]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[25]  Howie Choset,et al.  Adapting control policies for expensive systems to changing environments , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Jos'e Miguel Hern'andez-Lobato,et al.  Constrained Bayesian Optimization for Automatic Chemical Design , 2017 .

[27]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[28]  Justin J. Beland Bayesian Optimization Under Uncertainty , 2017 .

[29]  Peter I. Frazier,et al.  Bayesian Optimization with Expensive Integrands , 2018, SIAM J. Optim..

[30]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[31]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[32]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[33]  Prabhat,et al.  Scalable Bayesian Optimization Using Deep Neural Networks , 2015, ICML.

[34]  Jan Peters,et al.  Bayesian optimization for learning gaits under uncertainty , 2015, Annals of Mathematics and Artificial Intelligence.

[35]  J. Jawitz Moments of truncated continuous univariate distributions , 2004 .

[36]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[37]  Matthew W. Hoffman,et al.  Output-Space Predictive Entropy Search for Flexible Global Optimization , 2016 .

[38]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.