A model of active trading by using the properties of chaos

Article history: Available online xxxx

[1]  Yilmaz Akyüz,et al.  The Making of the Turkish Financial Crisis , 2003 .

[2]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[3]  Robert G. Harrison,et al.  Non-linear noise reduction and detecting chaos: some evidence from the S&P composite price index , 1999 .

[4]  P. Grassberger,et al.  Dimensions and entropies of strange attractors from a fluctuating dynamics approach , 1984 .

[5]  Jun Zhang,et al.  Time Series Prediction Using Lyapunov Exponents In Embedding Phase Space , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[6]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[7]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[8]  Bruce Mizrach,et al.  On Determining the Dimension of Real-Time Stock-Price Data , 1992 .

[9]  R. Gencay,et al.  An algorithm for the n Lyapunov exponents of an n -dimensional unknown dynamical system , 1992 .

[10]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[11]  M. Pesaran Predictability of Asset Returns and the Efficient Market Hypothesis , 2010, SSRN Electronic Journal.

[12]  Russell Cooper,et al.  NBER WORKING PAPER SERIES ESTIMATION AND IDENTIFICATION OF STRUCTURAL PARAMETERS IN THE PRESENCE OF MULTIPLE EQUILIBRIA , 2002 .

[13]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[14]  Christopher A. Sims,et al.  Martingale-Like Behavior of Prices and Interest Rates , 1984 .

[15]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[16]  Reidar Hagtvedt,et al.  Stock return dynamics and the CAPM anomalies , 2009 .

[17]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[18]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[19]  R. Aumann Agreeing to disagree. , 1976, Nature cell biology.

[20]  Chris Brooks,et al.  Introductory Econometrics for Finance , 2002 .

[21]  Muge Iseri,et al.  A model proposal for the chaotic structure of Istanbul stock exchange , 2008 .

[22]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[23]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[24]  Abhay Abhyankar,et al.  Uncovering nonlinear structure in real-time stock-market indexes: the S&P 500, the DAX, the Nikkei 225, and the FTSE-100 , 1997 .

[25]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[26]  Su Cheng-jian Nonlinear Characteristics and Fractal Dimension Analysis of Chinese Stock Markets , 2005 .

[27]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[28]  Bailey,et al.  Asset Pricing , 2017, Encyclopedia of GIS.

[29]  F. Takens Detecting strange attractors in turbulence , 1981 .

[30]  Ramazan Gençay,et al.  The predictability of security returns with simple technical trading rules , 1998 .

[31]  Atin Das,et al.  Chaotic analysis of the foreign exchange rates , 2007, Appl. Math. Comput..

[32]  P. Samuelson Proof that Properly Anticipated Prices Fluctuate Randomly , 2015 .

[33]  Edgar E. Peters A Chaotic Attractor For the S&P 500 , 1991 .

[34]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[35]  L. Bauwens,et al.  Econometrics , 2005 .

[36]  B. LeBaron,et al.  Nonlinear Dynamics and Stock Returns , 2021, Cycles and Chaos in Economic Equilibrium.

[37]  Guanrong Chen,et al.  Complex dynamical behaviors of daily data series in stock exchange , 2004 .

[38]  Tim Krehbiel,et al.  Does the S&P 500 futures mispricing series exhibit nonlinear dependence across time? , 1992 .

[39]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[40]  Chung-Ming Ou,et al.  Chaotic Behavior of Exchange Rate: Perspectives on Large Lyapunov Exponent of USD-TWD Time Series , 2010 .

[41]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .