Sampling Minimal Subsets with Large Spans for Robust Estimation

When sampling minimal subsets for robust parameter estimation, it is commonly known that obtaining an all-inlier minimal subset is not sufficient; the points therein should also have a large spatial extent. This paper investigates a theoretical basis behind this principle, based on a little known result which expresses the least squares regression as a weighted linear combination of all possible minimal subset estimates. It turns out that the weight of a minimal subset estimate is directly related to the span of the associated points. We then derive an analogous result for total least squares which, unlike ordinary least squares, corrects for errors in both dependent and independent variables. We establish the relevance of our result to computer vision by relating total least squares to geometric estimation techniques. As practical contributions, we elaborate why naive distance-based sampling fails as a strategy to maximise the span of all-inlier minimal subsets produced. In addition we propose a novel method which, unlike previous methods, can consciously target all-inlier minimal subsets with large spans.

[1]  Norbert Scherer-Negenborn,et al.  Model Fitting with Sufficient Random Sample Coverage , 2010, International Journal of Computer Vision.

[2]  Tat-Jun Chin,et al.  Accelerated Hypothesis Generation for Multistructure Data via Preference Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Tat-Jun Chin,et al.  Accelerated Hypothesis Generation for Multi-structure Robust Fitting , 2010, ECCV.

[4]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[5]  David W. Murray,et al.  Guided-MLESAC: faster image transform estimation by using matching priors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Sabine Van Huffel,et al.  Algebraic connections between the least squares and total least squares problems , 1989 .

[7]  Anders P. Eriksson,et al.  Outlier removal using duality , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Jan-Michael Frahm,et al.  RANSAC for (Quasi-)Degenerate data (QDEGSAC) , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  M. Carroll The Belknap Press of Harvard University Press , 1970 .

[10]  O. Chum,et al.  ENHANCING RANSAC BY GENERALIZED MODEL OPTIMIZATION Onďrej Chum, Jǐ , 2003 .

[11]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[12]  Didier Henrion,et al.  Globally Optimal Estimates for Geometric Reconstruction Problems , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[13]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[14]  Sabine Van Huffel,et al.  Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis , 2002, Comput. Stat. Data Anal..

[15]  Matthew Harker,et al.  Direct Estimation of Homogeneous Vectors: An Ill-Solved Problem in Computer Vision , 2006, ICVGIP.

[16]  Jiri Matas,et al.  Two-view geometry estimation unaffected by a dominant plane , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Richard I. Hartley,et al.  Multiple-View Geometry Under the {$L_\infty$}-Norm , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Sing Bing Kang,et al.  Emerging Topics in Computer Vision , 2004 .

[20]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[21]  C. Jacobi De formatione et proprietatibus Determinatium. , 1841 .

[22]  P. D. Groen An Introduction to Total Least Squares , 1998, math/9805076.

[23]  Dima Damen,et al.  Detecting Carried Objects in Short Video Sequences , 2008, ECCV.

[24]  Tat-Jun Chin,et al.  The Random Cluster Model for robust geometric fitting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Stephen M. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[26]  Ricardo D. Fierro,et al.  The Total Least Squares Problem: Computational Aspects and Analysis (S. Van Huffel and J. Vandewalle) , 1993, SIAM Rev..

[27]  Ilan Shimshoni,et al.  Balanced Exploration and Exploitation Model Search for Efficient Epipolar Geometry Estimation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jiri Matas,et al.  Planar Affine Rectification from Change of Scale , 2010, ACCV.

[29]  Tom Drummond,et al.  Dynamic measurement clustering to aid real time tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[30]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[31]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[33]  Peter Meer,et al.  ROBUST TECHNIQUES FOR COMPUTER VISION , 2004 .

[34]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[35]  Tat-Jun Chin,et al.  Dynamic and hierarchical multi-structure geometric model fitting , 2011, 2011 International Conference on Computer Vision.

[36]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision: Algorithm Evaluation and Error Analysis , 2004 .

[37]  Arthur E. Hoerl,et al.  M30. A note on least squares estimates , 1980 .

[38]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[39]  Rudolf Mester,et al.  The Role of Total Least Squares in Motion Analysis , 1998, ECCV.

[40]  G. Stewart,et al.  A generalization of the Eckart-Young-Mirsky matrix approximation theorem , 1987 .

[41]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Hiroshi Kawakami,et al.  Detection of Planar Regions with Uncalibrated Stereo using Distributions of Feature Points , 2004, BMVC.

[43]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[44]  Slawomir J. Nasuto,et al.  NAPSAC: High Noise, High Dimensional Robust Estimation - it's in the Bag , 2002, BMVC.

[45]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .