How machine learning is shaping cognitive

Functional brain images are rich and noisy data that can capture indirect signatures of neural activity underlying cognition in a given experimental setting. Can data mining leverage them to build models of cognition? Only if it is applied to well-posed questions, crafted to reveal cognitive mechanisms. Here we review how predictive models have been used on neuroimaging data to ask new questions, i.e., to uncover new aspects of cognitive organization. We also give a statistical learning perspective on these progresses and on the remaining gaping holes.

[1]  Stefan Pollmann,et al.  PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data , 2009, Neuroinformatics.

[2]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[3]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[4]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[5]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[6]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[7]  G. Edelman,et al.  Complexity and coherency: integrating information in the brain , 1998, Trends in Cognitive Sciences.

[8]  S. Edelman,et al.  Toward direct visualization of the internal shape representation space by fMRI , 1998, Psychobiology.

[9]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[10]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[11]  J. O'Doherty,et al.  Model‐Based fMRI and Its Application to Reward Learning and Decision Making , 2007, Annals of the New York Academy of Sciences.

[12]  L F Abbott,et al.  Decoding neuronal firing and modelling neural networks , 1994, Quarterly Reviews of Biophysics.

[13]  Stephen LaConte,et al.  Decoding fMRI brain states in real-time , 2011, NeuroImage.

[14]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[15]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[16]  Jean-Baptiste Poline,et al.  A group model for stable multi-subject ICA on fMRI datasets , 2010, NeuroImage.

[17]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[18]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[20]  Karl J. Friston,et al.  The relation of ongoing brain activity , evoked neural responses , and cognition , 2010 .

[21]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[22]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[23]  Jean-Baptiste Poline,et al.  Inferring behavior from functional brain images , 1998, Nature Neuroscience.

[24]  Dimitris Samaras,et al.  Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning , 2013, MICCAI.

[25]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[26]  R. Poldrack Inferring Mental States from Neuroimaging Data: From Reverse Inference to Large-Scale Decoding , 2011, Neuron.

[27]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[28]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[29]  Stephen José Hanson,et al.  Decoding the Large-Scale Structure of Brain Function by Classifying Mental States Across Individuals , 2009, Psychological science.

[30]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[31]  Gaël Varoquaux,et al.  Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity , 2011, IPMI.

[32]  Gaël Varoquaux,et al.  Mapping cognitive ontologies to and from the brain , 2013, NIPS 2013.

[33]  Gaël Varoquaux,et al.  Learning and comparing functional connectomes across subjects , 2013, NeuroImage.

[34]  Xiangyu Long,et al.  Functional segmentation of the brain cortex using high model order group PICA , 2009, Human brain mapping.

[35]  R. Poldrack Can cognitive processes be inferred from neuroimaging data? , 2006, Trends in Cognitive Sciences.

[36]  M. Greicius Resting-state functional connectivity in neuropsychiatric disorders , 2008, Current opinion in neurology.

[37]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[38]  G. Varoquaux,et al.  Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks? , 2012, Journal of Physiology-Paris.

[39]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[40]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[41]  R. Poldrack,et al.  Measuring neural representations with fMRI: practices and pitfalls , 2013, Annals of the New York Academy of Sciences.

[42]  Jeremy Freeman,et al.  Orientation Decoding Depends on Maps, Not Columns , 2011, The Journal of Neuroscience.

[43]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[44]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[45]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[46]  Thomas E. Nichols,et al.  Comprar Handbook Of Functional Mri Data Analysis | R. Poldrack | 9780521517669 | Cambridge University Press , 2011 .

[47]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[48]  Gaël Varoquaux,et al.  Cohort-Level Brain Mapping: Learning Cognitive Atoms to Single Out Specialized Regions , 2013, IPMI.

[49]  Gaël Varoquaux,et al.  Identifying Predictive Regions from fMRI with TV-L1 Prior , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[50]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[51]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[52]  Stefan Haufe,et al.  On the interpretation of weight vectors of linear models in multivariate neuroimaging , 2014, NeuroImage.

[53]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[54]  Aapo Hyvärinen,et al.  Independent component analysis of nondeterministic fMRI signal sources , 2003, NeuroImage.

[55]  Oluwasanmi Koyejo,et al.  Toward open sharing of task-based fMRI data: the OpenfMRI project , 2013, Front. Neuroinform..

[56]  M. Lindquist,et al.  An fMRI-based neurologic signature of physical pain. , 2013, The New England journal of medicine.

[57]  Paul E. Downing,et al.  Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations , 2007, Trends in Cognitive Sciences.

[58]  Jean-Baptiste Poline,et al.  Which fMRI clustering gives good brain parcellations? , 2014, Front. Neurosci..

[59]  J. S. Guntupalli,et al.  Decoding neural representational spaces using multivariate pattern analysis. , 2014, Annual review of neuroscience.

[60]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[61]  Gaël Varoquaux,et al.  Total Variation Regularization for fMRI-Based Prediction of Behavior , 2011, IEEE Transactions on Medical Imaging.

[62]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[64]  S. Dehaene,et al.  Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework , 2001, Cognition.

[65]  Gaël Varoquaux,et al.  Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering , 2012, ICML.

[66]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[67]  Jean-Baptiste Poline,et al.  Brain covariance selection: better individual functional connectivity models using population prior , 2010, NIPS.