Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures

The natural habitat of most Bayesian methods is data represented by exchangeable sequences of observations, for which de Finetti’s theorem provides the theoretical foundation. Dirichlet process clustering, Gaussian process regression, and many other parametric and nonparametric Bayesian models fall within the remit of this framework; many problems arising in modern data analysis do not. This article provides an introduction to Bayesian models of graphs, matrices, and other data that can be modeled by random structures. We describe results in probability theory that generalize de Finetti’s theorem to such data and discuss their relevance to nonparametric Bayesian modeling. With the basic ideas in place, we survey example models available in the literature; applications of such models include collaborative filtering, link prediction, and graph and network analysis. We also highlight connections to recent developments in graph theory and probability, and sketch the more general mathematical foundation of Bayesian methods for other types of data beyond sequences and arrays.

[1]  David Aldous,et al.  Exchangeability and Continuum Limits of Discrete Random Structures , 2011 .

[2]  B. De Finetti,et al.  Funzione caratteristica di un fenomeno aleatorio , 1929 .

[3]  C. Borgs,et al.  Moments of Two-Variable Functions and the Uniqueness of Graph Limits , 2008, 0803.1244.

[4]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[5]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[6]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[7]  Yee Whye Teh,et al.  Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.

[8]  Yee Whye Teh,et al.  Modelling Genetic Variations using Fragmentation-Coagulation Processes , 2011, NIPS.

[9]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[10]  D. Blei Bayesian Nonparametrics I , 2016 .

[11]  Daniel M. Roy Computability, inference and modeling in probabilistic programming , 2011 .

[12]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[13]  David A. Freedman,et al.  Invariants Under Mixing Which Generalize de Finetti's Theorem: Continuous Time Parameter , 1963 .

[14]  Lorenzo Trippa,et al.  Bayesian nonparametric analysis of reversible Markov chains , 2013, 1306.1318.

[15]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[16]  M. Schervish Theory of Statistics , 1995 .

[17]  D. Aldous Exchangeability and related topics , 1985 .

[18]  Michael I. Jordan,et al.  Bayesian Nonparametrics: Hierarchical Bayesian nonparametric models with applications , 2010 .

[19]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[20]  Michael I. Jordan,et al.  Stick-Breaking Beta Processes and the Poisson Process , 2012, AISTATS.

[21]  Lawrence Carin,et al.  A Stick-Breaking Construction of the Beta Process , 2010, ICML.

[22]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[23]  Peter D. Hoff,et al.  Modeling homophily and stochastic equivalence in symmetric relational data , 2007, NIPS.

[24]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[25]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[26]  Hans Bühlmann,et al.  Austauschbare stochastische Variabeln und ihre Grenzwertsätze , 1960 .

[27]  Béla Bollobás,et al.  Random Graphs and Branching Processes , 2008 .

[28]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[29]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[30]  F. Y. Edgeworth,et al.  The theory of statistics , 1996 .

[31]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[32]  S. Zabell Characterizing Markov exchangeable sequences , 1995 .

[33]  Priya Arora,et al.  Current Developments in Mathematics , 2016 .

[34]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[35]  D. Aldous Probability and Mathematical Genetics: More uses of exchangeability: representations of complex random structures , 2009, 0909.4339.

[36]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[37]  Gerry Leversha,et al.  Foundations of modern probability (2nd edn), by Olav Kallenberg. Pp. 638. £49 (hbk). 2002. ISBN 0 387 95313 2 (Springer-Verlag). , 2004, The Mathematical Gazette.

[38]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[39]  Michael I. Jordan,et al.  Cluster and Feature Modeling from Combinatorial Stochastic Processes , 2012, 1206.5862.

[40]  László Lovász,et al.  Very large graphs , 2009, 0902.0132.

[41]  Béla Bollobás,et al.  Handbook of large-scale random networks , 2008 .

[42]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[43]  P. Bickel,et al.  The method of moments and degree distributions for network models , 2011, 1202.5101.

[44]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[45]  J. Kingman The Representation of Partition Structures , 1978 .

[46]  B. Szegedy,et al.  Borel Liftings of Graph Limits , 2013, 1312.7351.

[47]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[48]  S. Wasserman,et al.  Stochastic a posteriori blockmodels: Construction and assessment , 1987 .

[49]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[50]  V. Sós,et al.  GRAPH LIMITS AND EXCHANGEABLE RANDOM GRAPHS , 2008 .

[51]  D. Freedman,et al.  De Finetti's Theorem for Markov Chains , 1980 .

[52]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[53]  Sonia Petrone,et al.  Predictive construction of priors in Bayesian nonparametrics , 2012 .

[54]  V. Varadarajan,et al.  Groups of automorphisms of Borel spaces , 1963 .

[55]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[56]  Yee Whye Teh,et al.  The Mondrian Process , 2008, NIPS.

[57]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[58]  Michael I. Jordan,et al.  Feature allocations, probability functions, and paintboxes , 2013, 1301.6647.

[59]  S. Lauritzen,et al.  Exponential families, extreme point models and minimal space-time invariant functions for stochastic processes with stationary and independent increments , 1989 .

[60]  Olav Kallenberg,et al.  Multivariate Sampling and the Estimation Problem for Exchangeable Arrays , 1999 .

[61]  O. Kallenberg Probabilistic Symmetries and Invariance Principles , 2005 .

[62]  Zenglin Xu,et al.  Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis , 2011, ICML.

[63]  Tim Austin On exchangeable random variables and the statistics of large graphs and hypergraphs , 2008, 0801.1698.

[64]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[65]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[66]  Michael I. Jordan,et al.  Hierarchical Bayesian Nonparametric Models with Applications , 2008 .

[67]  R. Durrett Random Graph Dynamics: References , 2006 .

[68]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[69]  László Lovász,et al.  Graph limits and parameter testing , 2006, STOC '06.

[70]  P. Wolfe,et al.  Nonparametric graphon estimation , 2013, 1309.5936.

[71]  Zoubin Ghahramani,et al.  Random function priors for exchangeable arrays with applications to graphs and relational data , 2012, NIPS.

[72]  L. J. Savage,et al.  Symmetric measures on Cartesian products , 1955 .

[73]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[74]  David A. Freedman,et al.  Invariants Under Mixing which Generalize de Finetti's Theorem , 1962 .

[75]  Jean Bertoin,et al.  Random fragmentation and coagulation processes , 2006 .

[76]  Martin Bálek,et al.  Lovász , Large Networks and Graph Limits , 2013 .

[77]  A. Tversky,et al.  On the Reconciliation of Probability Assessments , 1979 .

[78]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[79]  S. Lauritzen Extremal Families and Systems of Sufficient Statistics , 1988 .

[80]  Peter D. Hoff,et al.  Separable covariance arrays via the Tucker product, with applications to multivariate relational data , 2010, 1008.2169.