Lepard: Learning partial point cloud matching in rigid and deformable scenes

We present Lepard, a Learning based approach for partial point cloud matching for rigid and deformable scenes. The key characteristic of Lepard is the following approaches that exploit 3D positional knowledge for point cloud matching: 1) An architecture that disentangles point cloud representation into feature space and 3D position space. 2) A position encoding method that explicitly reveals 3D relative distance information through the dot product of vectors. 3) A repositioning technique that modifies the cross-point-cloud relative positions. Ablation studies demonstrate the effectiveness of the above techniques. For rigid point cloud matching, Lepard sets a new stateof-the-art on the 3DMatch / 3DLoMatch benchmarks with 93.6% / 69.0% registration recall. In deformable cases, Lepard achieves +27.1% / +34.8% higher non-rigid feature matching recall than the prior art on our newly constructed 4DMatch / 4DLoMatch benchmark. Code and data are available at https://github.com/rabbityl/lepard.

[1]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[2]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[3]  Tomasz Malisiewicz,et al.  SuperGlue: Learning Feature Matching With Graph Neural Networks , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Long Quan,et al.  D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[6]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Tomás Pajdla,et al.  Neighbourhood Consensus Networks , 2018, NeurIPS.

[9]  Leonidas J. Guibas,et al.  FlowNet3D: Learning Scene Flow in 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Yasuhiro Aoki,et al.  PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Justus Thies,et al.  Neural Non-Rigid Tracking , 2020, NeurIPS.

[12]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[13]  Jiwen Lu,et al.  PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[14]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[15]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Simon Lucey,et al.  PointNetLK Revisited , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Leonidas J. Guibas,et al.  Weakly Supervised Learning of Rigid 3D Scene Flow , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Pushmeet Kohli,et al.  Fusion4D , 2016, ACM Trans. Graph..

[20]  Daniel Cremers,et al.  Non‐Rigid Puzzles , 2016, Comput. Graph. Forum.

[21]  Vladlen Koltun,et al.  Deep Global Registration , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Mohamed El Banani,et al.  UnsupervisedR&R: Unsupervised Point Cloud Registration via Differentiable Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Russell H. Taylor,et al.  Neighborhood Normalization for Robust Geometric Feature Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[25]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[26]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[27]  Alexandre Boulch,et al.  FLOT: Scene Flow on Point Clouds Guided by Optimal Transport , 2020, ECCV.

[28]  Yue Wang,et al.  Deep Closest Point: Learning Representations for Point Cloud Registration , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Maks Ovsjanikov,et al.  DPFM: Deep Partial Functional Maps , 2021, 2021 International Conference on 3D Vision (3DV).

[31]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  M. Zollhöfer,et al.  DeepDeform: Learning Non-Rigid RGB-D Reconstruction With Semi-Supervised Data , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Shi-Min Hu,et al.  MultiBodySync: Multi-Body Segmentation and Motion Estimation via 3D Scan Synchronization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Mathieu Aubry,et al.  3D-CODED: 3D Correspondences by Deep Deformation , 2018, ECCV.

[36]  Daniel Cremers,et al.  KillingFusion: Non-rigid 3D Reconstruction without Correspondences , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Siyu Zhu,et al.  End-to-End Learning Local Multi-View Descriptors for 3D Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Shengfeng Pan,et al.  RoFormer: Enhanced Transformer with Rotary Position Embedding , 2021, ArXiv.

[39]  Hongbo Fu,et al.  PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Zhen Dong,et al.  You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors , 2021, ArXiv.

[41]  Matthias Nießner,et al.  VolumeDeform: Real-Time Volumetric Non-rigid Reconstruction , 2016, ECCV.

[42]  Slobodan Ilic,et al.  CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration , 2021, NeurIPS.

[43]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[44]  Vladlen Koltun,et al.  Fully Convolutional Geometric Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[46]  Jiaolong Yang,et al.  Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Eunseok Kim,et al.  Distinctiveness oriented Positional Equilibrium for Point Cloud Registration , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[48]  Sven Behnke,et al.  Registration with the Point Cloud Library: A Modular Framework for Aligning in 3-D , 2015, IEEE Robotics & Automation Magazine.

[49]  Qingyong Hu,et al.  SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[51]  Bing Zeng,et al.  OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud Registration , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[52]  Dieter Fox,et al.  Self-Supervised Visual Descriptor Learning for Dense Correspondence , 2017, IEEE Robotics and Automation Letters.

[53]  Andrew W. Fitzgibbon,et al.  Real-time non-rigid reconstruction using an RGB-D camera , 2014, ACM Trans. Graph..

[54]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[55]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[56]  Mohamed El Banani,et al.  Bootstrap Your Own Correspondences , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[57]  Andreas Wieser,et al.  The Perfect Match: 3D Point Cloud Matching With Smoothed Densities , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Matthias Nießner,et al.  Learning to Optimize Non-Rigid Tracking , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Tatsuya Harada,et al.  SplitFusion: Simultaneous Tracking and Mapping for Non-Rigid Scenes , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[60]  Hujun Bao,et al.  LoFTR: Detector-Free Local Feature Matching with Transformers , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Konrad Schindler,et al.  PREDATOR: Registration of 3D Point Clouds with Low Overlap , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Shahram Izadi,et al.  Motion2fusion , 2017, ACM Trans. Graph..

[63]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[64]  Rama Chellappa,et al.  3DRegNet: A Deep Neural Network for 3D Point Registration , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Vladlen Koltun,et al.  Robust reconstruction of indoor scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[67]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[68]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Yue Wang,et al.  PRNet: Self-Supervised Learning for Partial-to-Partial Registration , 2019, NeurIPS.

[70]  Takafumi Taketomi,et al.  4DComplete: Non-Rigid Motion Estimation Beyond the Observable Surface , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[71]  Wei Gao,et al.  SurfelWarp: Efficient Non-Volumetric Single View Dynamic Reconstruction , 2018, Robotics: Science and Systems.

[72]  Zi Jian Yew,et al.  RPM-Net: Robust Point Matching Using Learned Features , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[74]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).