TISSU NUMÉRIQUE CELLULAIRE À ROUTAGE ET CONFIGURATION DYNAMIQUES

In the design of new machines or in the development of new concepts, mankind has often observed nature, looking for useful ideas and sources of inspiration. The design of electronic circuits is no exception, and a considerable number of realizations have drawn inspiration from three aspects of natural systems : the evolution of species (Phylogenesis), the development of an organism starting from a single cell (Ontogenesis), and learning, as performed by our brain (Epigenesis). These three axes, grouped under the acronym POE, have for the most part been exploited separately : evolutionary principles allow to solve problems for which it is hard to find a solution with a deterministic method, while some electronic circuits draw inspiration from healing process in living beings to achieve self-repair, and artificial neural networks have the capability to efficiently execute a wide range of tasks. At this time, no electronic tissue capable of bringing them together seems to exist. The introduction of reconfigurable circuits called Field Programmable Gate Arrays (FPGAs), whose behavior can be redefined as often as desired, made prototyping such systems easier. FPGAs, by allowing a relatively simple implementation in hardware, can considerably increase the systems' performance and are thus extensively used by researchers. However, they lack plasticity, not being able to easily modify themselves without an external intervention. This PhD thesis, developed in the framework of the European POEtic project, proposes to define a new reconfigurable electronic circuit, with the goal of supplying a new substrate for bio-inspired applications that bring all three axes into play. This circuit is mainly composed of a microprocessor and an array of reconfigurable elements, the latter having been designed during this thesis. Evolutionary processes are executed by the microprocessor, while epigenetic and ontogenetic mechanisms are applied in the reconfigurable array, to entities seen as multicellular artificial organisms. Relatively similar to current commercial FPGAs, this subsystem offers however some unique features. First, the basic elements of the array have the capability to partially reconfigure other elements. Auto-replication and differentiation mechanisms can exploit this capability to let an organism grow or to modify its behavior. Second, a distributed routing layer allows to dynamically create connections between parts of the circuit at runtime. With this feature, cells (artificial neurons, for example) implemented in the reconfigurable array can initiate new connections in order to modify the global system behavior. This distributed routing mechanism, one of the major contributions of this thesis, induced the realization of several algorithms. Based on a parallel implementation of Lee's algorithm, these algorithms are totally distributed, no global control being necessary to create new data paths. Four algorithms have been defined implemented in hardware in the form of routing units connected to 3, 4, 6, or 8 neighbors. These units are all identical and are responsible for the routing processes. An analysis of their properties allows us to define the best algorithm, coupled with the most efficient neighborhood, in terms of congestion and of the number of transistors needed for a hardware realization. We finish the routing chapter by proposing a fifth algorithm that, unlike the previous ones, is constructed only through local interactions between routing units. It offers a better scalability, at the price of increased hardware overhead. Finally, the POEtic chip, in which one of our algorithms has been implemented, has been physically realized. We present different POE mechanisms that take advantage of its new features. Among these mechanisms, we can notably cite auto-replication, evolvable hardware, developmental systems, and self-repair. All of these mechanisms have been developed with the help of a circuit simulator, also designed in the framework of this thesis.

[1]  Dario Floreano,et al.  Evolution of Spiking Neural Controllers for Autonomous Vision-Based Robots , 2001, EvoRobots.

[2]  Bertrand Mesot,et al.  SOS++: finding smart behaviors using learning and evolution , 2002 .

[3]  Gianluca Tempesti,et al.  A robust multiplexer-based FPGA inspired by biological systems , 1997, J. Syst. Archit..

[4]  R. Prim Shortest connection networks and some generalizations , 1957 .

[5]  Tom Blank,et al.  A Survey of Hardware Accelerators Used in Computer-Aided Design , 1984, IEEE Design & Test of Computers.

[6]  Ravi Nair,et al.  Global wiring on a wire routing machine , 1982, DAC.

[7]  C. Isenberg Soap Films and Bubbles. , 1981 .

[8]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[9]  Gunnar Tufte,et al.  Shrinking the Genotype: L-systems for EHW? , 2001, ICES.

[10]  P. Abramson,et al.  An Analog Computer for Finding an Optimum Route Through a Communication Network , 1959 .

[11]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[12]  Jonathan Rose,et al.  Architecture of field-programmable gate arrays: the effect of logic block functionality on area efficiency , 1990 .

[13]  Hugo de Garis,et al.  Million Module Neural Systems Evolution - The Next Step in ATR's Billion Neuron Artificial Brain ("CAM-Brain") Project , 1997, Artificial Evolution.

[14]  A. Glassner Soap bubbles. 2 [Computer graphics] , 2000 .

[15]  Dario Floreano,et al.  Evolution and learning in Autonomous Robotic Agents , 1998 .

[16]  R. Guo,et al.  A 1024 Pin Universal Interconnect Array With Routing Architecture , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[17]  Stephen M. Scalera,et al.  The design and implementation of a context switching FPGA , 1998, Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251).

[18]  Manabu Yamada,et al.  A parallel routing technique based on local current comparison , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[19]  Gianluca Tempesti,et al.  Fault Tolerance Using Dynamic Reconfiguration on the POEtic Tissue , 2007, IEEE Transactions on Evolutionary Computation.

[20]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[21]  E. F. Moore Sequential Machines: Selected Papers , 1964 .

[22]  Stephen M. Trimberger Field-Programmable Gate Array Technology , 2007 .

[23]  D. Roggen Multi-cellular reconfigurable circuits , 2005 .

[24]  Dave Hightower A solution to line-routing problems on the continuous plane , 1969, DAC '69.

[25]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[26]  Steven A. Guccione,et al.  GeneticFPGA: evolving stable circuits on mainstream FPGA devices , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[27]  Eshel Ben-Jacob,et al.  From Neurons to Brain: Adaptive Self-Wiring of Neurons , 1998, Adv. Complex Syst..

[28]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[29]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[30]  William J. Dally,et al.  The role of custom design in ASIC chips , 2000, Proceedings 37th Design Automation Conference.

[31]  Andrew Adamatzky,et al.  Computation of shortest path in cellular automata , 1996 .

[32]  Sanyou Zeng,et al.  Evolvable Systems: From Biology to Hardware, 7th International Conference, ICES 2007, Wuhan, China, September 21-23, 2007, Proceedings , 2007, ICES.

[33]  Hiroshi Nakashima,et al.  Amon: a parallel slice algorithm for wire routing , 1995, ICS '95.

[34]  Abraham Waksman,et al.  An Optimum Solution to the Firing Squad Synchronization Problem , 1966, Inf. Control..

[35]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[36]  Bernard Widrow,et al.  The basic ideas in neural networks , 1994, CACM.

[37]  Brad Hutchings,et al.  RRANN: a hardware implementation of the backpropagation algorithm using reconfigurable FPGAs , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[38]  Clive ldMax rd Maxfield,et al.  The design warrior's guide to FPGAs , 2004 .

[39]  Gianluca Tempesti,et al.  A Dynamic Routing Algorithm for a Bio-inspired Reconfigurable Circuit , 2003, FPL.

[40]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[41]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[42]  John Wawrzynek,et al.  Hardware-assisted fast routing , 2002, Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

[43]  Gianluca Tempesti,et al.  Developmental processes in silicon: an engineering perspective , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..

[44]  Garrison W. Greenwood,et al.  Book Review: Bio-Inspired Computing Machines: Towards Novel Computational Architectures , 2001, Genetic Programming and Evolvable Machines.

[45]  Jonathan Rose,et al.  The effect of logic block architecture on FPGA performance , 1992 .

[46]  George J. Minty Letter to the Editor—A Variant on the Shortest-Route Problem , 1957 .

[47]  Eduardo Sanchez Field Programmable Gate Array (FPGA) Circuits , 1995, Towards Evolvable Hardware.

[48]  C. Darwin,et al.  On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection , 1858 .

[49]  Steven S. Muchnick,et al.  Advanced Compiler Design and Implementation , 1997 .

[50]  Christof Teuscher,et al.  Self-Organizing Topology Evolution of Turing Neural Networks , 2001, ICANN.

[51]  Yoshizo Takahashi,et al.  Parallel automated wire-routing with a number of competing processors , 1990, ICS '90.

[52]  R. E. Massara,et al.  General-purpose parallel hardware approach to the routing problem of VLSI layout , 1993 .

[53]  Stephane Pajot Percolation et economie , 2001 .

[54]  Sartaj Sahni,et al.  Parallel algorithms for physical design , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[55]  Toshio Kondo,et al.  A large scale cellular array processor: AAP-1 , 1985, CSC '85.

[56]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[57]  Yoshifumi Sekine,et al.  Pulse‐type hardware chaotic neuron model and its bifurcation phenomena , 1998 .

[58]  B. Hayes Experimental Lamarckism , 1999, American Scientist.

[59]  P. Holland The future of evolutionary developmental biology , 1999, Nature.

[60]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[61]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[62]  John J. Grefenstette,et al.  Lamarckian Learning in Multi-Agent Environments , 1991, ICGA.

[63]  R. Goldschmidt,et al.  The material basis of evolution , 1941 .

[64]  Fernando Gehm Moraes,et al.  Remote and partial reconfiguration of FPGAs: tools and trends , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[65]  Rolf Hoffmann,et al.  Solving Routing Problems with Cellular Automata , 1996, ACRI.

[66]  Willy M. C. Sansen,et al.  A Line-Expansion Algorithm for the General Routing Problem with a Guaranteed Solution , 1980, 17th Design Automation Conference.

[67]  Farokh B. Bastani,et al.  Strategies for mapping Lee's maze routing algorithm onto parallel architectures , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[68]  Marco Tomassini,et al.  A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems , 1997, IEEE Trans. Evol. Comput..

[69]  Yu-Wen Tsai,et al.  Structured ASIC, evolution or revolution? , 2004, ISPD '04.

[70]  Robert K. Brayton,et al.  A force-directed maze router , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[71]  Tatiana Kalganova,et al.  Bidirectional incremental evolution in extrinsic evolvable hardware , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[72]  F. Rubin,et al.  The Lee Path Connection Algorithm , 1974, IEEE Transactions on Computers.

[73]  John A. Nestor A new look at hardware maze routing , 2002, GLSVLSI '02.

[74]  Marco Tomassini,et al.  Phylogeny, Ontogeny, and Epigenesis: Three Sources of Biological Inspiration for Softening Hardware , 1996, ICES.

[75]  Sartaj Sahni,et al.  A Hardware Accelerator for Maze Routing , 1987, 24th ACM/IEEE Design Automation Conference.

[76]  Andrés Pérez Uribe,et al.  Structure-Adaptable Digital Neural Networks , 1999 .

[77]  F. Gage,et al.  Mammalian neural stem cells. , 2000, Science.

[78]  Ashok Samal,et al.  HGA: A Hardware-Based Genetic Algorithm , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[79]  Stefano Nolfi,et al.  Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines , 2000 .

[80]  Dario Floreano,et al.  Hardware spiking neural network with run-time reconfigurable connectivity in an autonomous robot , 2003, NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings..

[81]  Edwin Rogers,et al.  An Isma Lee Router Accelerator , 1987, IEEE Design & Test of Computers.

[82]  Dario Floreano,et al.  A Morphogenetic Evolutionary System: Phylogenesis of the POEtic Circuit , 2003, ICES.

[83]  Masato Motomura,et al.  An Embedded DRAM-FPGA Chip With Instantaneous Logic Reconfiguration , 1997, Symposium 1997 on VLSI Circuits.

[84]  Gianluca Tempesti,et al.  Hardware realization of a bio-inspired POEtic tissue , 2004, Proceedings. 2004 NASA/DoD Conference on Evolvable Hardware, 2004..

[85]  Jim Tørresen,et al.  A Scalable Approach to Evolvable Hardware , 2002, Genetic Programming and Evolvable Machines.

[86]  Jan Eriksson,et al.  Spiking Neural Networks for Reconfigurable POEtic Tissue , 2003, ICES.

[87]  Marco Platzner,et al.  Heuristics for Onine Scheduling Real-Time Tasks to Partially Reconfigurable Devices , 2003, FPL.

[88]  Martine D. F. Schlag,et al.  Acceleration of an FPGA router , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[89]  Phil Husbands,et al.  Emergent Robustness and Self-Repair through Developmental Cellular Systems , 2004 .

[90]  Parag K. Lala Digital System Design Using: Programmable Logic Devices , 2003 .

[91]  Michael John Sebastian Smith,et al.  Application-specific integrated circuits , 1997 .

[92]  C. Langton Self-reproduction in cellular automata , 1984 .

[93]  Frédéric Gruau,et al.  Genetic synthesis of Boolean neural networks with a cell rewriting developmental process , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[94]  Kiyoshi Oguri,et al.  PCA-1: a fully asynchronous, self-reconfigurable LSI , 2001, Proceedings Seventh International Symposium on Asynchronous Circuits and Systems. ASYNC 2001.

[95]  Robert Balzer,et al.  An 8-state Minimal Time Solution to the Firing Squad Synchronization Problem , 1967, Inf. Control..

[96]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[97]  H. G. Adshead Towards VLSI complexity: The DA algorithm scaling problem: can special DA hardware help? , 1982, DAC 1982.

[98]  G. Hartmann,et al.  A flexible hardware architecture for online Hebbian learning in the sender-oriented PCNN-neurocomputer Spike 128 K , 1999, Proceedings of the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems.

[99]  Jonathan Rose Parallel global routing for standard cells , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[100]  Gianluca Tempesti,et al.  Ontogenetic Development and Fault Tolerance in the POEtic Tissue , 2003, ICES.

[101]  Julian Francis Miller,et al.  Aspects of Digital Evolution: Geometry and Learning , 1998, ICES.

[102]  C. Goodman,et al.  Special Feature: The evolution of evo-devo biology , 2000 .

[103]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[104]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[105]  T. Sudo,et al.  An LSI adaptive array processor , 1982, 1982 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[107]  Ravi Nair,et al.  A Simple Yet Effective Technique for Global Wiring , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[108]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[109]  Tim Schönauer,et al.  NeuroPipe-Chip: A digital neuro-processor for spiking neural networks , 2002, IEEE Trans. Neural Networks.

[110]  Seong-Gon Kong,et al.  Block-based neural networks , 2001, IEEE Trans. Neural Networks.

[111]  Robert J. Smith,et al.  Performance of Interconnection Rip-Up and Reroute Strategies , 1981, 18th Design Automation Conference.

[112]  Raoul Tawel,et al.  Evolutionary experiments with a fine-grained reconfigurable architecture for analog and digital CMOS circuits , 1999, Proceedings of the First NASA/DoD Workshop on Evolvable Hardware.

[113]  Andrew M. Tyrrell,et al.  Safe intrinsic evolution of Virtex devices , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[114]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[115]  Hugo de Garis,et al.  CAM-BRAIN Growing an Artificial Brain with a Million Neural Net Modules Inside a Trillion Cell Cellular Automata Machine , 1994 .

[116]  A. Wilkins,et al.  The evolution of 'bricolage'. , 1998, Trends in genetics : TIG.

[117]  Sheldon B. Akers,et al.  A Modification of Lee's Path Connection Algorithm , 1967, IEEE Trans. Electron. Comput..

[118]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[119]  Inman Harvey,et al.  Unconstrained Evolution and Hard Consequences , 1995, Towards Evolvable Hardware.

[120]  Andres Upegui,et al.  An Functional Spiking Neuron Hardware Oriented Model , 2003, IWANN.

[121]  Delon Levi,et al.  JBits: Java based interface for reconfigurable computing , 1999 .

[122]  Adrian Thompson,et al.  Silicon evolution , 1996 .

[123]  Julian Francis Miller,et al.  Aspects of Digital Evolution: Evolvability and Architecture , 1998, PPSN.

[124]  Yuichi Nagata,et al.  The Lens Design Using the CMA-ES Algorithm , 2004, GECCO.

[125]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[126]  H. Kumar,et al.  Parallel implementation of a cut and paste maze routing algorithm , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[127]  Eduardo Sanchez,et al.  A Reconfigurable Chip for Evolvable Hardware , 2004, GECCO.

[128]  Gianluca Tempesti,et al.  Artificial cell division. , 2004, Bio Systems.

[129]  John Wawrzynek,et al.  Stochastic, spatial routing for hypergraphs, trees, and meshes , 2003, FPGA '03.

[130]  C. Y. Lee An Algorithm for Path Connections and Its Applications , 1961, IRE Trans. Electron. Comput..

[131]  Chak-Kuen Wong,et al.  Analysis of FPGA/FPIC switch modules , 2003, TODE.

[132]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[133]  T. Ohmi,et al.  Advances in neuron-MOS applications , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[134]  E. Damm,et al.  Hardware Support for Automatic Routing , 1982, DAC 1982.

[135]  Hiroaki Kitano Building Complex Systems Using Developmental Process: An Engineering Approach , 1998, ICES.

[136]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[137]  A. Thakoor,et al.  Design of parallel hardware neural network systems from custom analog VLSI 'building block' chips , 1989, International 1989 Joint Conference on Neural Networks.

[138]  Lionel M. Ni,et al.  A survey of wormhole routing techniques in direct networks , 1993, Computer.

[139]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[140]  Isamu Kajitani,et al.  Variable length chromosome GA for evolvable hardware , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[141]  Jim Torresen,et al.  Possibilities and Limitations of Applying Evolvable Hardware to Real-World Applications , 2000, FPL.

[142]  Andrew M. Tyrrell,et al.  Using GAs to Create a Waveguide Model of the Oral Vocal Tract , 2004, EvoWorkshops.

[143]  Eduardo Sanchez,et al.  An in-system routing strategy for evolvable hardware programmable platforms , 2001, Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH-2001.

[144]  J. A. Hillier,et al.  A Method for Finding the Shortest Route Through a Road Network , 1960 .

[145]  Jacques Mazoyer,et al.  A Six-State Minimal Time Solution to the Firing Squad Synchronization Problem , 1987, Theor. Comput. Sci..

[146]  Jim Tørresen,et al.  A Divide-and-Conquer Approach to Evolvable Hardware , 1998, ICES.

[147]  S. Edvinsson,et al.  Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period , 2002, European Journal of Human Genetics.

[148]  Hiroshi Yokoi,et al.  An evolvable hardware chip for prosthetic hand controller , 1999, Proceedings of the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems.

[149]  Jim Torresen,et al.  Evolvable Hardware as a New Computer Architecture , 2002 .

[150]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[151]  Gianluca Tempesti,et al.  Towards Robust Integrated Circuits: The Embryonics Approach. Proc IEEE , 2000 .

[152]  Rob A. Rutenbar,et al.  A Class of Cellular Architectures to Support Physical Design Automation , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[153]  Dave Hightower,et al.  The interconnection problem: A tutorial , 1973, Computer.

[154]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[155]  Isamu Kajitani,et al.  Hardware Evolution at Function Level , 1996, PPSN.

[156]  Julian Francis Miller,et al.  Evolving a Self-Repairing, Self-Regulating, French Flag Organism , 2004, GECCO.

[157]  J. B. Grimbleby,et al.  Automatic analogue circuit synthesis using genetic algorithms , 2000 .

[158]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[159]  Mark Stefik,et al.  A Parallel Bit Map Processor Architecture for DA Algorithms , 1981, 18th Design Automation Conference.

[160]  Robert K. Korn An Efficient Variable-Cost Maze Router , 1982, DAC 1982.

[161]  Hugo de Garis,et al.  Initial Evolution Results on CAM-Brain Machines (CBMs) , 2001, ICANN.

[162]  Andres Perez-Uribe,et al.  Structure-Adaptable Digital Neural Networks , 1999 .

[163]  Prabhas Chongstitvatana,et al.  Synthesis of Synchronous Sequential Logic Circuits from Partial Input/Output Sequences , 1998, ICES.

[164]  Christoph Adami,et al.  A Developmental Model for the Evolution of Artificial Neural Networks , 2000, Artificial Life.

[165]  Gerald E. Sobelman,et al.  Hardware rip-up router with concurrent wavefront propagation , 1989 .

[166]  Hiroshi Yokoi,et al.  A Gate-Level EHW Chip: Implementing GA Operations and Reconfigurable Hardware on a Single LSI , 1998, ICES.

[167]  Viktor K. Prasanna,et al.  Genetic Programming Using Self-Reconfigurable FPGAs , 1999, FPL.

[168]  Dwight D. Hill,et al.  A CAD system for the design of field programmable gate arrays , 1991, 28th ACM/IEEE Design Automation Conference.

[169]  unavoidably withheld The Variation of Animals and Plants under Domestication , 1868, The British and foreign medico-chirurgical review.

[170]  Dario Floreano,et al.  POEtic Tissue: An Integrated Architecture for Bio-inspired Hardware , 2003, ICES.

[171]  Michiya Oura,et al.  A secure dynamically programmable gate array based on ferroelectric memory , 2003 .

[172]  Vaughn Betz,et al.  How Much Logic Should Go in an FPGA Logic Block? , 1998, IEEE Des. Test Comput..

[173]  Phil Husbands,et al.  An Evolving and Developing Cellular Electronic Circuit , 2004 .

[174]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[175]  Denis Duboule,et al.  Hox gene expression in teleost fins and the origin of vertebrate digits , 1995, Nature.

[176]  Tatsuo Ohtsuki,et al.  A hardware implementation of gridless routing based on content addressable memory , 1991, DAC '90.

[177]  Takumi Watanabe,et al.  A New Routing Algorithm and Its Hardware Implementation , 1986, 23rd ACM/IEEE Design Automation Conference.

[178]  Tadashi Shibata,et al.  Neuron MOS binary-logic integrated circuits. I. Design fundamentals and soft-hardware-logic circuit implementation , 1993 .

[179]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[180]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[181]  Jeffrey H. Hoel Some Variations of Lee's Algorithm , 1976, IEEE Transactions on Computers.

[182]  Jonathan Rose,et al.  CALL FOR ARTICLES IEEE Design & Test of Computers Special Issue on Microprocessors , 1996 .

[183]  Jiri Soukup,et al.  Fast Maze Router , 1978, 15th Design Automation Conference.

[184]  Derek S. Linden,et al.  Optimizing signal strength in-situ using an evolvable antenna system , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[185]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[186]  Maurice Pollack,et al.  SOLUTIONS OF THE SHORTEST-ROUTE PROBLEM-A REVIEW , 1960 .

[187]  Hans P. Moravec When will computer hardware match the human brain , 1998 .

[188]  Marley M. B. R. Vellasco,et al.  Analog Circuits Evolution in Extrinsic and Intrinsic Modes , 1998, ICES.

[189]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[190]  Carl Ebeling,et al.  PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[191]  Yoshi Sugiyama,et al.  A New Routing Algorithm and Its Hardware Implementation , 1986, DAC 1986.

[192]  U. Pape,et al.  Algorithm 562: Shortest Path Lengths [H] , 1980, TOMS.

[193]  Takahiro Sasaki,et al.  Comparison between Lamarckian and Darwinian Evolution on a Model Using Neural Networks and Genetic Algorithms , 2000, Knowledge and Information Systems.

[194]  Brad Hutchings,et al.  Density enhancement of a neural network using FPGAs and run-time reconfiguration , 1994, Proceedings of IEEE Workshop on FPGA's for Custom Computing Machines.

[195]  Jan Eriksson,et al.  Hardware optimization and serial implementation of a novel spiking neuron model for the POEtic tissue. , 2004, Bio Systems.

[196]  Klaus Echtle,et al.  A Genetic Algorithm for Fault-Tolerant System Design , 2003, LADC.

[197]  Adrian Thompson,et al.  An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics , 1996, ICES.

[198]  Christopher W. Fraser,et al.  A Retargetable C Compiler: Design and Implementation , 1995 .

[199]  Hitoshi Kitazawa,et al.  A Parallel Adaptable Routing Algorithm and its Implementation on a Two-Dimensional Array Processor , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[200]  S. Bornholdt,et al.  Topological evolution of dynamical networks: global criticality from local dynamics. , 2000, Physical review letters.

[201]  Tatiana Kalganova,et al.  Some Aspects of an Evolvable Hardware Approach for Multiple-Valued Combinational Circuit Design , 1998, ICES.

[202]  Melvin A. Breuer,et al.  Some theoretical aspects of algorithmic routing , 1977, DAC '77.

[203]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[204]  Kinya Tabuchi,et al.  A computer program for optimal routing of printed circuit conductors , 1968, IFIP Congress.

[205]  Masayoshi Tachibana,et al.  A Hardware Maze Router with Application to Interactive Rip-Up and Reroute , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[206]  T. D. Spiers,et al.  A High Performance Routing Engine , 1987, 24th ACM/IEEE Design Automation Conference.

[207]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[208]  Fikret Erçal,et al.  Time-Efficient Maze Routing Algorithms on Reconfigurable Mesh Architectures , 1997, J. Parallel Distributed Comput..

[209]  D. Lambert,et al.  Comment les pattes viennent au serpent. Essai sur l'étonnante plasticité du vivant. , 2004 .

[210]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[211]  E. Mayr SPECIATION AND MACROEVOLUTION , 1982, Evolution; international journal of organic evolution.

[212]  Eduardo Sanchez,et al.  Prototyping with a bio-inspired reconfigurable chip , 2004, Proceedings. 15th IEEE International Workshop on Rapid System Prototyping, 2004..

[213]  Andrew S. Glassner Soap Bubbles: Part 1 , 2000, IEEE Computer Graphics and Applications.

[214]  G. Palm Warren McCulloch and Walter Pitts: A Logical Calculus of the Ideas Immanent in Nervous Activity , 1986 .