Reed–Solomon Codes over Fields of Characteristic Zero

We study Reed–Solomon codes over arbitrary fields, inspired by several recent papers dealing with Gabidulin codes over fields of characteristic zero. Over the field of rational numbers, we derive bounds on the coefficient growth during encoding and the bit complexity of decoding, which is polynomial in the code length and in the bit width of error and codeword values. The results can be generalized to arbitrary number fields.

[1]  Daniel Augot,et al.  Generalized Gabidulin codes over fields of any characteristic , 2017, Des. Codes Cryptogr..

[2]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[3]  Babak Hassibi,et al.  Explicit measurements with almost optimal thresholds for compressed sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  Johan S. R. Nielsen,et al.  Power Decoding Reed-Solomon Codes Up to the Johnson Radius , 2015, ArXiv.

[5]  Ron M. Roth,et al.  On generator matrices of MDS codes , 1985, IEEE Trans. Inf. Theory.

[6]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[7]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  Werner Henkel Zur Decodierung algebraischer Blockcodes über komplexen Alphabeten , 1989 .

[9]  Henning Alexander Zörlein,et al.  Channel Coding Inspired Contributions to Compressed Sensing , 2015 .

[10]  F. D. Parker Inverses of Vandermonde Matrices , 1964 .

[11]  Ron M. Roth Tensor codes for the rank metric , 1996, IEEE Trans. Inf. Theory.

[12]  Martin Bossert,et al.  Low-Rank Matrix Recovery using Gabidulin Codes in Characteristic Zero , 2016, Electron. Notes Discret. Math..

[13]  Yuan Zhou Introduction to Coding Theory , 2010 .

[14]  Gwezheneg Robert A new constellation for space-time coding , 2015 .

[15]  Martin Bossert,et al.  Guruswami-Sudan List Decoding for Complex Reed-Solomon Codes , 2016, ArXiv.

[16]  Martin Bossert,et al.  Syndrome Decoding of Reed–Solomon Codes Beyond Half the Minimum Distance Based on Shift-Register Synthesis , 2010, IEEE Transactions on Information Theory.

[17]  Jack K. Wolf,et al.  Redundancy, the Discrete Fourier Transform, and Impulse Noise Cancellation , 1983, IEEE Trans. Commun..

[18]  Yingquan Wu,et al.  New List Decoding Algorithms for Reed–Solomon and BCH Codes , 2007, IEEE Transactions on Information Theory.

[19]  G. David Forney,et al.  On decoding BCH codes , 1965, IEEE Trans. Inf. Theory.

[20]  Gwezheneg Robert A quadratic Welch-Berlekamp algorithm to decode generalized Gabidulin codes, and some variants , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[21]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[22]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[23]  Daniel Augot,et al.  Rank metric and Gabidulin codes in characteristic zero , 2013, 2013 IEEE International Symposium on Information Theory.

[24]  N. Zierler,et al.  A Class of Error-Correcting Codes in $p^m $ Symbols , 1961 .

[25]  Martin Bossert,et al.  An alternative decoding method for Gabidulin codes in characteristic zero , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[26]  T. Marshall,et al.  Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..

[27]  Martin Bossert,et al.  Deterministic Compressed Sensing with Power Decoding for Complex Reed-Solomon Codes , 2015 .

[28]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.