Time course of allocentric decay, egocentric decay, and allocentric-to-egocentric conversion in memory-guided reach

Allocentric cues can be used to encode locations in visuospatial memory, but it is not known how and when these representations are converted into egocentric commands for behaviour. Here, we tested the influence of different memory intervals on reach performance toward targets defined in either egocentric or allocentric coordinates, and then compared this to performance in a task where subjects were implicitly free to choose when to convert from allocentric to egocentric representations. Reach and eye positions were measured using Optotrak and Eyelink Systems, respectively, in fourteen subjects. Our results confirm that egocentric representations degrade over a delay of several seconds, whereas allocentric representations remained relatively stable over the same time scale. Moreover, when subjects were free to choose, they converted allocentric representations into egocentric representations as soon as possible, despite the apparent cost in reach precision in our experimental paradigm. This suggests that humans convert allocentric representations into egocentric commands at the first opportunity, perhaps to optimize motor noise and movement timing in real-world conditions.

[1]  P. Viviani,et al.  Frames of reference and control parameters in visuomanual pointing. , 1998, Journal of experimental psychology. Human perception and performance.

[2]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[3]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[4]  J. Douglas Crawford,et al.  Visual memory capacity in transsaccadic integration , 2007, Experimental Brain Research.

[5]  A. Pouget,et al.  Multisensory spatial representations in eye-centered coordinates for reaching , 2002, Cognition.

[6]  T. S. Constantinidis,et al.  Speed-accuracy trade-off in the performance of pointing movements in different directions in two-dimensional space , 2000, Experimental Brain Research.

[7]  M. Goodale,et al.  The visual brain in action , 1995 .

[8]  Anthony R. Dickinson,et al.  Limb-Specific Representation for Reaching in the Posterior Parietal Cortex , 2008, The Journal of Neuroscience.

[9]  Xiaogang Yan,et al.  Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. , 2008, Journal of neurophysiology.

[10]  J Douglas Crawford,et al.  Cue reliability and a landmark stability heuristic determine relative weighting between egocentric and allocentric visual information in memory-guided reach. , 2010, Journal of neurophysiology.

[11]  David A. Westwood,et al.  Delayed grasping of a Müller-Lyer figure , 2001, Experimental Brain Research.

[12]  M. Goodale,et al.  Frames of Reference for Perception and Action in the Human Visual System , 1998, Neuroscience & Biobehavioral Reviews.

[13]  D. E. Irwin Memory for position and identity across eye movements. , 1992 .

[14]  A. C. Sittig,et al.  Vector coding in slow goal-directed arm movements , 1996, Perception & psychophysics.

[15]  Thomas Schmidt,et al.  Immediate spatial distortions of pointing movements induced by visual landmarks , 2004, Perception & psychophysics.

[16]  Martin Lemay,et al.  Multiple frames of reference for pointing to a remembered target , 2005, Experimental Brain Research.

[17]  O. Bock,et al.  Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements , 2004, Experimental Brain Research.

[18]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[19]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[20]  Carl R Olson,et al.  Brain representation of object-centered space in monkeys and humans. , 2003, Annual review of neuroscience.

[21]  C. MacKenzie,et al.  The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics , 2004, Experimental Brain Research.

[22]  Michael I. Jordan,et al.  Viewing the hand prior to movement improves accuracy of pointing performed toward the unseen contralateral hand , 1997, Experimental Brain Research.

[23]  Matthew Heath,et al.  The effect of a pictorial illusion on closed-loop and open-loop prehension , 2000, Experimental Brain Research.

[24]  Simon J Watt,et al.  A dissociation of perception and action in normal human observers: the effect of temporal-delay , 2002, Neuropsychologia.

[25]  Matthew Heath,et al.  The proximity of visual landmarks impacts reaching performance. , 2007, Spatial vision.

[26]  F. Lacquaniti,et al.  Short-Term Memory for Reaching to Visual Targets: Psychophysical Evidence for Body-Centered Reference Frames , 1998, The Journal of Neuroscience.

[27]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[28]  M. Heath Role of limb and target vision in the online control of memory-guided reaches. , 2005, Motor control.

[29]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[30]  D. Elliott,et al.  The Influence of Premovement Visual Information on Manual Aiming , 1987, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[31]  F. Lacquaniti,et al.  Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space. , 1997, Journal of neurophysiology.

[32]  M. Goodale,et al.  Two distinct modes of control for object-directed action. , 2004, Progress in brain research.

[33]  Melvyn A. Goodale,et al.  The effects of landmarks on the performance of delayed and real-time pointing movements , 2005, Experimental Brain Research.

[34]  Shinsuke Shimojo,et al.  Extrinsic Cues Suppress the Encoding of Intrinsic Cues , 2004, Journal of Cognitive Neuroscience.

[35]  O. Bock,et al.  Error accumulation and error correction in sequential pointing movements , 2004, Experimental Brain Research.

[36]  P. Medendorp,et al.  Visuospatial updating of reaching targets in near and far space , 2002, Neuroreport.

[37]  Y. Rossetti,et al.  Optic ataxia errors depend on remapped, not viewed, target location , 2005, Nature Neuroscience.

[38]  J. D. Crawford,et al.  Spatial Transformations for Eye–Hand Coordination , 2004 .

[39]  Matthew Heath,et al.  Background visual cues and memory-guided reaching. , 2004, Human movement science.

[40]  B. Bridgeman,et al.  Interaction of cognitive and sensorimotor maps of visual space , 1997, Perception & psychophysics.

[41]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[42]  W Pieter Medendorp,et al.  Updating target distance across eye movements in depth. , 2008, Journal of neurophysiology.

[43]  B. Bridgeman,et al.  Segregation of cognitive and motor aspects of visual function using induced motion , 1981, Perception & psychophysics.

[44]  R. Chua,et al.  Decay in Visuomotor Representations During Manual Aiming , 2006, Journal of motor behavior.

[45]  David E. Irwin Robert D. Gordon Eye Movements, Attention and Trans-saccadic Memory , 1998 .

[46]  M. A. Goodale,et al.  Grasping after a Delay Shifts Size-Scaling from Absolute to Relative Metrics , 2000, Journal of Cognitive Neuroscience.

[47]  T. Vilis,et al.  Remapping the remembered target location for anti-saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[48]  O. Bock,et al.  Goal-directed arm movements in absence of visual guidance: evidence for amplitude rather than position control , 2004, Experimental Brain Research.

[49]  Laurette Hay,et al.  Response delay and spatial representation in pointing movements , 2006, Neuroscience Letters.

[50]  Mark Dean,et al.  Trading off speed and accuracy in rapid, goal-directed movements. , 2007, Journal of vision.

[51]  Tutis Vilis,et al.  Human parietal "reach region" primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. , 2007, Cerebral cortex.

[52]  J. Douglas Crawford,et al.  Interactions between gaze-centered and allocentric representations of reach target location in the presence of spatial updating , 2010, Vision Research.

[53]  Gereon R. Fink,et al.  Human medial intraparietal cortex subserves visuomotor coordinate transformation , 2004, NeuroImage.

[54]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[55]  Melvyn A Goodale,et al.  Interactions between the dorsal and ventral streams of visual processing. , 2003, Advances in neurology.

[56]  W Pieter Medendorp,et al.  Gaze-centered updating of remembered visual space during active whole-body translations. , 2007, Journal of neurophysiology.

[57]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[58]  J. Crawford,et al.  Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task , 1998, The Journal of Neuroscience.

[59]  Francesco Lacquaniti,et al.  Cognitive allocentric representations of visual space shape pointing errors , 2002, Experimental Brain Research.

[60]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[61]  Neil Burgess,et al.  Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory , 2004, Cognition.

[62]  Wayne A. Wickelgren,et al.  Speed-accuracy tradeoff and information processing dynamics , 1977 .

[63]  Gunnar Blohm,et al.  Decoding the cortical transformations for visually guided reaching in 3D space. , 2009, Cerebral cortex.

[64]  J. F. Soechting,et al.  Early stages in a sensorimotor transformation , 1992, Behavioral and Brain Sciences.

[65]  C. Hesse,et al.  Grasping remembered objects: Exponential decay of the visual memory , 2010, Vision Research.

[66]  J D Crawford,et al.  Role of eye, head, and shoulder geometry in the planning of accurate arm movements. , 2002, Journal of neurophysiology.

[67]  M. Goodale,et al.  The effects of delay on the kinematics of grasping , 1999, Experimental Brain Research.

[68]  M A Goodale,et al.  Different spaces and different times for perception and action. , 2001, Progress in brain research.

[69]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[70]  S. Chieffi,et al.  Visual illusion and action , 1996, Neuropsychologia.

[71]  Reza Modarres,et al.  Spatial memory during progressive disorientation. , 2008, Journal of experimental psychology. Learning, memory, and cognition.

[72]  D. Elliott,et al.  The influence of uncertainty and premovement visual information on manual aiming. , 1990, Canadian journal of psychology.

[73]  D. Elliott,et al.  A visual representation and the control of manual aiming movements. , 1990, Journal of motor behavior.

[74]  F. Lacquaniti,et al.  Parieto-frontal coding of reaching: an integrated framework , 1999, Experimental Brain Research.

[75]  D. Y. P. Henriques,et al.  Direction-dependent distortions of retinocentric space in the visuomotor transformation for pointing , 2000, Experimental Brain Research.