Bootstrap-based inferential improvements in beta autoregressive moving average model

Abstract We consider the issue of performing accurate small sample inference in beta autoregressive moving average model, which is useful for modeling and forecasting continuous variables that assume values in the interval (0, 1). The inferences based on conditional maximum likelihood estimation have good asymptotic properties, but their performances in small samples may be poor. This way, we propose bootstrap bias corrections of the point estimators and different bootstrap strategies for confidence interval improvements. Our Monte Carlo simulations show that finite sample inference based on bootstrap corrections is much more reliable than the usual inferences. We also presented an empirical application.

[1]  Andréa V. Rocha,et al.  Beta autoregressive moving average models , 2009 .

[2]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[3]  S. Ferrari,et al.  Improved likelihood inference in beta regression , 2011 .

[4]  D. Cox,et al.  A General Definition of Residuals , 1968 .

[5]  Jeremy Berkowitz,et al.  Recent developments in bootstrapping time series , 1996 .

[6]  L. Kilian,et al.  Bootstrapping autoregressive processes with possible unit roots , 2000 .

[7]  D. Politis The Impact of Bootstrap Methods on Time Series Analysis , 2003 .

[8]  H. Akaike A new look at the statistical model identification , 1974 .

[9]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[10]  R. Rigby,et al.  Generalized Autoregressive Moving Average Models , 2003 .

[11]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[12]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[13]  Gauss M. Cordeiro,et al.  Bias correction in ARMA models , 1994 .

[14]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[15]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[16]  Paul Newbold,et al.  Finite sample properties of estimators for autoregressive moving average models , 1980 .

[17]  Francisco Cribari-Neto,et al.  Inferência em modelos heterocedásticos , 2003 .

[18]  W. Härdle,et al.  Bootstrap Methods for Time Series , 2003 .

[19]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[20]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[21]  Hyeongwoo Kim,et al.  Bias Correction and Out-of-Sample Forecast Accuracy , 2009 .

[22]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[23]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[24]  Jae H. Kim Forecasting autoregressive time series with bias-corrected parameter estimators , 2003 .

[25]  Francisco Cribari-Neto,et al.  Improved point and interval estimation for a beta regression model , 2006, Comput. Stat. Data Anal..

[26]  Francisco Cribari-Neto,et al.  An Introduction to Bartlett Correction and Bias Reduction , 2014 .

[27]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[28]  A. Zeileis,et al.  Beta Regression in R , 2010 .

[29]  Glaura C. Franco,et al.  Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes , 2007 .

[30]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[31]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[32]  Pierre Pinson,et al.  Global Energy Forecasting Competition 2012 , 2014 .

[33]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .