Service robot localization using improved Particle filter

Recently, Particle filter becomes the most popular approach in mobile robot localization and has been applied with great success to a variety of state estimation problems. In this paper, the particle filter is applied in position tracking and global localization. Moreover, the posterior distribution of robot pose in global localization is usually multimodal due to the symmetry of the environment and ambiguous detected features. Considering these characteristics, we proposed the cluster particle filter to improve the global localization robustness and accuracy. Experiment results show the effectiveness and robustness of our approach in our service robot ApriAlphatrade Platform.

[1]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[2]  Sridhar Mahadevan,et al.  Robust Mobile Robot Navigation using Partially-Observable Semi-Markov Decision Processes , 1999 .

[3]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[5]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Reid G. Simmons,et al.  Lessons learned from Xavier , 2000, IEEE Robotics Autom. Mag..

[7]  Tae-Bum Kwon,et al.  Efficiency Improvement in Monte Carlo Localization through Topological Information , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[9]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[10]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[11]  Pablo González de Santos,et al.  The evolution of robotics research , 2007, IEEE Robotics & Automation Magazine.

[12]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[13]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[14]  Mingguo Zhao,et al.  Mobile robots global localization using adaptive dynamic clustered particle filters , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Javier Nicolás Sánchez,et al.  Robust global localization using clustered particle filtering , 2002, AAAI/IAAI.

[16]  Nobuto Matsuhira,et al.  Effective application of Monte Carlo localization for service robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Dieter Fox,et al.  An experimental comparison of localization methods continued , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.