An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings

The brain is constituted of multiple networks of functionally correlated brain areas, out of which the default-mode network (DMN) is the largest. Most existing research into the DMN has taken a corticocentric approach. Despite its resemblance with the unitary model of the limbic system, the contribution of subcortical structures to the DMN may be underappreciated. Here, we propose a more comprehensive neuroanatomical model of the DMN including subcortical structures such as the basal forebrain, cholinergic nuclei, anterior and mediodorsal thalamic nuclei. Additionally, tractography of diffusion-weighted imaging was employed to explore the structural connectivity, which revealed that the thalamus and basal forebrain are of central importance for the functioning of the DMN. The contribution of these neurochemically diverse brain nuclei reconciles previous neuroimaging with neuropathological findings in diseased brains and offers the potential for identifying a conserved homologue of the DMN in other mammalian species.Pedro Alves et al. use a functional alignment approach to build an improved map of the default-mode network (DMN) from resting state fMRI-based individual DMN maps. They find that thalamus and basal forebrain are central to the DMN and validate these findings through tractography and graph theory analysis of structural connectivity in their DMN model.

[1]  J. W. Papez A PROPOSED MECHANISM OF EMOTION , 1937 .

[2]  J. Kenney,et al.  Mathematics of statistics , 1940 .

[3]  Y. Pi Motility, behavior, and the brain. , 1946 .

[4]  P. Yakovlev MOTILITY, BEHAVIOR AND THE BRAIN*: STEREODYNAMIC ORGANIZATION AND NEURAL CO‐ORDINATES OF BEHAVIOR , 1948, The Journal of nervous and mental disease.

[5]  P. Maclean Psychosomatic Disease and the "Visceral Brain": Recent Developments Bearing on the Papez Theory of Emotion , 1949, Psychosomatic medicine.

[6]  P. Maclean Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). , 1952, Electroencephalography and clinical neurophysiology.

[7]  P. Yakovlev,et al.  Limbic nuclei of thalamus and connections of limbic cortex. III. Corticocortical connections of the anterior cingulate gyrus, the cingulum, and the subcallosal bundle in monkey. , 1961, Archives of neurology.

[8]  J. Voogd,et al.  The human central nervous system : a synopsis and atlas , 1978 .

[9]  J. Voogd,et al.  The human central nervous system , 1978 .

[10]  D. Ingvar “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state , 1979, Acta neurologica Scandinavica.

[11]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[12]  S. Haber,et al.  The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey , 1990, Neuroscience.

[13]  Jacob Cohen,et al.  A power primer. , 1992, Psychological bulletin.

[14]  S. Haber,et al.  Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input , 1994, The Journal of comparative neurology.

[15]  E. Lynd-Balta,et al.  The orbital and medial prefrontal circuit through the primate basal ganglia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  M. Corbetta,et al.  Top-down modulation of early sensory cortex. , 1997 .

[17]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[18]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[19]  John Patrick Aggleton,et al.  The Amygdala : a functional analysis , 2000 .

[20]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[21]  B. Mazoyer,et al.  Cortical networks for working memory and executive functions sustain the conscious resting state in man , 2001, Brain Research Bulletin.

[22]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[23]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[24]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[25]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[26]  M. Olmstead,et al.  Integrated contributions of basal forebrain and thalamus to neocortical activation elicited by pedunculopontine tegmental stimulation in urethane-anesthetized rats , 2003, Neuroscience.

[27]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[28]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[29]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[30]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[31]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[32]  P. Fransson Spontaneous low‐frequency BOLD signal fluctuations: An fMRI investigation of the resting‐state default mode of brain function hypothesis , 2005, Human brain mapping.

[33]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[34]  M. Hasselmo The role of acetylcholine in learning and memory , 2006, Current Opinion in Neurobiology.

[35]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[36]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[37]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[38]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[39]  S. Laviolette Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia? , 2007, Schizophrenia bulletin.

[40]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[41]  Giuseppe Pagnoni,et al.  A comparison of resting-state brain activity in humans and chimpanzees , 2007, Proceedings of the National Academy of Sciences.

[42]  Richard C Saunders,et al.  Origin and topography of fibers contributing to the fornix in macaque monkeys , 2007, Hippocampus.

[43]  Tianzi Jiang,et al.  Regional coherence changes in the early stages of Alzheimer’s disease: A combined structural and resting-state functional MRI study , 2007, NeuroImage.

[44]  Ivan Osorio,et al.  High Frequency Thalamic Stimulation for Inoperable Mesial Temporal Epilepsy , 2007, Epilepsia.

[45]  D. Schacter,et al.  Remembering the past to imagine the future: the prospective brain , 2007, Nature Reviews Neuroscience.

[46]  R. Bluhm,et al.  Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. , 2007, Schizophrenia bulletin.

[47]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[48]  B. Biswal,et al.  Functional connectivity of human striatum: a resting state FMRI study. , 2008, Cerebral cortex.

[49]  Katrin Amunts,et al.  Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain , 2008, NeuroImage.

[50]  A. Butler Evolution of the thalamus: a morphological and functional review , 2008 .

[51]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[52]  L. Nyberg,et al.  Altered deactivation in individuals with genetic risk for Alzheimer's disease , 2008, Neuropsychologia.

[53]  R. Salvador,et al.  Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? , 2008, Psychological Medicine.

[54]  John P Aggleton,et al.  Please Scroll down for Article the Quarterly Journal of Experimental Psychology Understanding Anterograde Amnesia: Disconnections and Hidden Lesions , 2022 .

[55]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[56]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[57]  R. Nathan Spreng,et al.  The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis , 2009, Journal of Cognitive Neuroscience.

[58]  Jeremy D. Schmahmann,et al.  Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies , 2009, NeuroImage.

[59]  S. Debener,et al.  Default-mode brain dysfunction in mental disorders: A systematic review , 2009, Neuroscience & Biobehavioral Reviews.

[60]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[61]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[62]  Daniel S. Margulies,et al.  Functional connectivity of the human amygdala using resting state fMRI , 2009, NeuroImage.

[63]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[64]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[65]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[66]  Deanna L. Wallace,et al.  ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses , 2010, Nature Neuroscience.

[67]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[68]  M. Mallar Chakravarty,et al.  Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. , 2010, The American journal of psychiatry.

[69]  K. Amunts,et al.  Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer's disease. , 2010, Cerebral cortex.

[70]  Mara Cercignani,et al.  Twenty‐five pitfalls in the analysis of diffusion MRI data , 2010, NMR in biomedicine.

[71]  Giuseppe Scotti,et al.  A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution , 2010, NeuroImage.

[72]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[73]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[74]  Donald T. Stuss,et al.  Common and Unique Neural Correlates of Autobiographical Memory and Theory of Mind , 2010, Journal of Cognitive Neuroscience.

[75]  R. Nathan Spreng,et al.  Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network , 2010, Journal of Cognitive Neuroscience.

[76]  R. Buckner,et al.  Functional-Anatomic Fractionation of the Brain's Default Network , 2010, Neuron.

[77]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[78]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[79]  Rita Z. Goldstein,et al.  Motivation Deficit in ADHD is Associated with Dysfunction of the Dopamine Reward Pathway , 2010, Molecular Psychiatry.

[80]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[81]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[82]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[83]  Yong He,et al.  Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. , 2011, Cerebral cortex.

[84]  Matthew P. G. Allin,et al.  Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography , 2011, NeuroImage.

[85]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[86]  Michel Thiebaut de Schotten,et al.  Short frontal lobe connections of the human brain , 2012, Cortex.

[87]  M. Catani,et al.  Introduction to Descriptive Neuroanatomy , 2012 .

[88]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[89]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[90]  R. Buckner,et al.  The organization of the human striatum estimated by intrinsic functional connectivity. , 2012, Journal of neurophysiology.

[91]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[92]  N. Voets,et al.  Structural substrates for resting network disruption in temporal lobe epilepsy. , 2012, Brain : a journal of neurology.

[93]  R. Wise,et al.  Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens , 2012, Neuron.

[94]  R. Saxe,et al.  Look at this: the neural correlates of initiating and responding to bids for joint attention , 2012, Front. Hum. Neurosci..

[95]  Fabrizio Esposito,et al.  Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease , 2012, Neurology.

[96]  M. Raichle,et al.  Rat brains also have a default mode network , 2012, Proceedings of the National Academy of Sciences.

[97]  Ivan Toni,et al.  On the relationship between the “default mode network” and the “social brain” , 2012, Front. Hum. Neurosci..

[98]  Martin Egelhaaf,et al.  Prototypical Components of Honeybee Homing Flight Behavior Depend on the Visual Appearance of Objects Surrounding the Goal , 2012, Front. Behav. Neurosci..

[99]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[100]  Mert R. Sabuncu,et al.  The influence of head motion on intrinsic functional connectivity MRI , 2012, NeuroImage.

[101]  J. Ford,et al.  Default mode network activity and connectivity in psychopathology. , 2012, Annual review of clinical psychology.

[102]  Michel Thiebaut de Schotten,et al.  Atlas of Human Brain Connections , 2012 .

[103]  B. Waterhouse,et al.  Evidence for Broad Versus Segregated Projections from Cholinergic and Noradrenergic Nuclei to Functionally and Anatomically Discrete Subregions of Prefrontal Cortex , 2012, Front. Behav. Neurosci..

[104]  G. Dai,et al.  Neuroanatomic Connectivity of the Human Ascending Arousal System Critical to Consciousness and Its Disorders , 2012, Journal of neuropathology and experimental neurology.

[105]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[106]  B. Waterhouse,et al.  Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex , 2013, Brain Research.

[107]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[108]  MRI anatomical variants of mammillary bodies , 2013, Brain Structure and Function.

[109]  M. Fox,et al.  Individual Variability in Functional Connectivity Architecture of the Human Brain , 2013, Neuron.

[110]  P. Fox,et al.  Segregation of the human medial prefrontal cortex in social cognition , 2013, Front. Hum. Neurosci..

[111]  E. Benarroch,et al.  Anterior nucleus of the thalamus , 2013, Neurology.

[112]  M. Catani,et al.  Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true‐tract specific index to characterize white matter diffusion , 2013, Human brain mapping.

[113]  Michel Thiebaut de Schotten,et al.  A revised limbic system model for memory, emotion and behaviour , 2013, Neuroscience & Biobehavioral Reviews.

[114]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[115]  N. Rinehart,et al.  Interpersonal motor resonance in autism spectrum disorder: evidence against a global “mirror system” deficit , 2013, Front. Hum. Neurosci..

[116]  T. Hendler,et al.  Portraying the unique contribution of the default mode network to internally driven mnemonic processes , 2013, Proceedings of the National Academy of Sciences.

[117]  K. Zilles,et al.  An investigation of the structural, connectional, and functional subspecialization in the human amygdala , 2012, Human brain mapping.

[118]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[119]  E. Halgren,et al.  Septal nuclei enlargement in human temporal lobe epilepsy without mesial temporal sclerosis , 2013, Neurology.

[120]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[121]  Ludovica Griffanti,et al.  Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers , 2014, NeuroImage.

[122]  E. S. B. van Oort,et al.  An investigation into the functional and structural connectivity of the Default Mode Network , 2014, NeuroImage.

[123]  Francesco Sforazzini,et al.  Distributed BOLD and CBV-weighted resting-state networks in the mouse brain , 2014, NeuroImage.

[124]  Kristina M. Visscher,et al.  Ventral Tegmental Area/Midbrain Functional Connectivity and Response to Antipsychotic Medication in Schizophrenia , 2014, Neuropsychopharmacology.

[125]  Massimo Silvetti,et al.  Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual "in vivo" tractography dissection. , 2012, Cerebral cortex.

[126]  Angela R. Laird,et al.  Subspecialization in the human posterior medial cortex , 2015, NeuroImage.

[127]  J. Öhman,et al.  Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: Delineation using 3 T MRI and intraoperative microelectrode recording , 2015, NeuroImage: Clinical.

[128]  Satrajit S. Ghosh,et al.  Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion , 2015, MICCAI.

[129]  Z. Nadasdy,et al.  Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. , 2015, Cerebral cortex.

[130]  Wilfried Philips,et al.  MRI Segmentation of the Human Brain: Challenges, Methods, and Applications , 2015, Comput. Math. Methods Medicine.

[131]  Steve S. Chung,et al.  Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy , 2015, Neurology.

[132]  Alessandro Gozzi,et al.  Functional connectivity hubs of the mouse brain , 2015, NeuroImage.

[133]  S. Gentleman,et al.  Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease , 2015, Acta Neuropathologica.

[134]  F. Mormann,et al.  Synergy of Direct and Indirect Cholinergic Septo-Hippocampal Pathways Coordinates Firing in Hippocampal Networks , 2015, The Journal of Neuroscience.

[135]  J. Pariente,et al.  Thalamic amnesia after infarct , 2015, Neurology.

[136]  Lesley A. McCollum,et al.  Uncovering the role of the nucleus accumbens in schizophrenia: A postmortem analysis of tyrosine hydroxylase and vesicular glutamate transporters , 2015, Schizophrenia Research.

[137]  S. Lehéricy,et al.  Hippocampal‐thalamic wiring in medial temporal lobe epilepsy: Enhanced connectivity per hippocampal voxel , 2015, Epilepsia.

[138]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[139]  Russell A. Poldrack,et al.  Dynamic fluctuations in global brain network topology characterize functional states during rest and behavior , 2015, 1511.02976.

[140]  Carl-Fredrik Westin,et al.  The white matter query language: a novel approach for describing human white matter anatomy , 2015, Brain Structure and Function.

[141]  Harvey J Karten,et al.  Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’ , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[142]  Maarten Mennes,et al.  Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI , 2015, NeuroImage.

[143]  S. Floresco The nucleus accumbens: an interface between cognition, emotion, and action. , 2015, Annual review of psychology.

[144]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[145]  Timothy O. Laumann,et al.  Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. , 2016, Cerebral cortex.

[146]  Yingjie Zhu,et al.  A thalamic input to the nucleus accumbens mediates opiate dependence , 2016, Nature.

[147]  Krzysztof J. Gorgolewski,et al.  The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance , 2015, Neuron.

[148]  Rebecca A Mease,et al.  Cortical Sensory Responses Are Enhanced by the Higher-Order Thalamus. , 2016, Cell reports.

[149]  Y. Okamoto,et al.  Association of thalamic hyperactivity with treatment-resistant depression and poor response in early treatment for major depression: a resting-state fMRI study using fractional amplitude of low-frequency fluctuations , 2016, Translational Psychiatry.

[150]  P. Fox,et al.  Functional Segregation of the Human Dorsomedial Prefrontal Cortex. , 2016, Cerebral cortex.

[151]  John P. Aggleton,et al.  Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit , 2016, Brain : a journal of neurology.

[152]  P. Kalivas,et al.  The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis , 2016, Pharmacological Reviews.

[153]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[154]  Alessandro Gozzi,et al.  Large-scale functional connectivity networks in the rodent brain , 2016, NeuroImage.

[155]  T. Shallice,et al.  Identical, similar or different? Is a single brain model sufficient? , 2017, Cortex.

[156]  Xiujuan Geng,et al.  Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome , 2017, Brain : a journal of neurology.

[157]  Dardo Tomasi,et al.  Structural and functional connectivity of the precuneus and thalamus to the default mode network , 2017, Human brain mapping.

[158]  Xueling Zhu,et al.  Rumination and Default Mode Network Subsystems Connectivity in First-episode, Drug-Naive Young Patients with Major Depressive Disorder , 2017, Scientific Reports.

[159]  Peter F. Neher,et al.  The challenge of mapping the human connectome based on diffusion tractography , 2017, Nature Communications.

[160]  M Spies,et al.  Default mode network deactivation during emotion processing predicts early antidepressant response , 2017, Translational Psychiatry.

[161]  Rodrigo M. Braga,et al.  Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity , 2017, Neuron.

[162]  Xi Xie,et al.  Neuroplastic Correlates in the mPFC Underlying the Impairment of Stress-Coping Ability and Cognitive Flexibility in Adult Rats Exposed to Chronic Mild Stress during Adolescence , 2017, Neural plasticity.

[163]  N. Volkow,et al.  Correlation between Traits of Emotion-Based Impulsivity and Intrinsic Default-Mode Network Activity , 2017, Neural plasticity.

[164]  Sebastien Ourselin,et al.  The importance of correcting for signal drift in diffusion MRI , 2017, Magnetic resonance in medicine.

[165]  P. Vernier,et al.  New perspective on the regionalization of the anterior forebrain in Osteichthyes , 2017, Development, growth & differentiation.

[166]  Elyssa B. Margolis,et al.  Ventral tegmental area: cellular heterogeneity, connectivity and behaviour , 2017, Nature Reviews Neuroscience.

[167]  B. Turetsky,et al.  Computing the Social Brain Connectome Across Systems and States , 2018, Cerebral cortex.

[168]  Ross D. Markello,et al.  Segregation of the human basal forebrain using resting state functional MRI , 2018, NeuroImage.

[169]  N. Tanriover,et al.  Mammillothalamic and Mammillotegmental Tracts as New Targets for Dementia and Epilepsy Treatment. , 2018, World neurosurgery.

[170]  G. Varoquaux,et al.  Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants , 2018, Proceedings of the National Academy of Sciences.

[171]  Alessandro Gozzi,et al.  Autism-associated 16p11.2 microdeletion impairs prefrontal functional connectivity in mouse and human , 2018, Brain : a journal of neurology.

[172]  Leonardo Cerliani,et al.  Structural Variability Across the Primate Brain: A Cross-Species Comparison , 2018, Cerebral cortex.

[173]  G. Rainer,et al.  Basal forebrain contributes to default mode network regulation , 2018, Proceedings of the National Academy of Sciences.

[174]  R. Levy,et al.  Advanced lesion symptom mapping analyses and implementation as BCBtoolkit , 2017, bioRxiv.

[175]  M. Petrides,et al.  The human ventromedial prefrontal cortex sulcal morphology and its influence on its functional organization , 2018, bioRxiv.

[176]  Richard Levy,et al.  Two critical brain networks for generation and combination of remote associations , 2018, Brain : a journal of neurology.

[177]  Daniel S. Margulies,et al.  Macroscale Cortical Organization and a Default-Like Transmodal Apex Network in the Marmoset Monkey , 2018, bioRxiv.

[178]  Daniel S. Margulies,et al.  Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey , 2019, Nature Communications.

[179]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[180]  M. Corbetta,et al.  The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain , 2018, Nature Communications.

[181]  N. Volkow,et al.  Association Between Brain Activation and Functional Connectivity. , 2019, Cerebral cortex.