Generating Ampicillin-Level Antimicrobial Peptides with Activity-Aware Generative Adversarial Networks

†Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan ‡School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan ¶Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan §Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ‖RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan ⊥Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan

[1]  David Eisenberg,et al.  The helical hydrophobic moment: a measure of the amphiphilicity of a helix , 1982, Nature.

[2]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[3]  Eduardo F. Morales,et al.  An Introduction to Reinforcement Learning , 2011 .

[4]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[5]  Xiaowei Zhao,et al.  LAMP: A Database Linking Antimicrobial Peptides , 2013, PloS one.

[6]  Ann Nowé,et al.  Scalarized multi-objective reinforcement learning: Novel design techniques , 2013, 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

[7]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[8]  Faiza Hanif Waghu,et al.  CAMP: Collection of sequences and structures of antimicrobial peptides , 2013, Nucleic Acids Res..

[9]  A. Gabrielian,et al.  DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides , 2016, Nucleic Acids Res..

[10]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[11]  Faiza Hanif Waghu,et al.  CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides , 2015, Nucleic Acids Res..

[12]  Tom Schaul,et al.  FeUdal Networks for Hierarchical Reinforcement Learning , 2017, ICML.

[13]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[14]  Gisbert Schneider,et al.  modlAMP: Python for antimicrobial peptides , 2017, Bioinform..

[15]  Lantao Yu,et al.  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient , 2016, AAAI.

[16]  N. Chandra,et al.  Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria , 2017, The Journal of Biological Chemistry.

[17]  Gisbert Schneider,et al.  Recurrent Neural Network Model for Constructive Peptide Design , 2018, J. Chem. Inf. Model..

[18]  Yong Yu,et al.  Long Text Generation via Adversarial Training with Leaked Information , 2017, AAAI.

[19]  Justin M. Wolfe,et al.  Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery , 2018, ACS central science.

[20]  Lei Zheng,et al.  Texygen: A Benchmarking Platform for Text Generation Models , 2018, SIGIR.

[21]  Cícero Nogueira dos Santos,et al.  PepCVAE: Semi-Supervised Targeted Design of Antimicrobial Peptide Sequences , 2018, 1810.07743.

[22]  K. Hayashi,et al.  Development of Amphipathic Antimicrobial Peptide Foldamers Based on Magainin 2 Sequence , 2019, ChemMedChem.

[23]  Claudia S Neuhaus,et al.  De novo design of anticancer peptides by ensemble artificial neural networks , 2019, Journal of Molecular Modeling.

[24]  James Zou,et al.  Feedback GAN for DNA optimizes protein functions , 2019, Nature Machine Intelligence.