Adaptive extremum seeking control of continuous stirred-tank bioreactors

An adaptive extremum-seeking control scheme for continuous stirred-tank bioreactors is proposed which utilizes the structure information of the kinetics of bioreactors to construct a seeking algorithm that drives the system states to the desired setpoints that optimize the value of an objective function. Lyapunov's stability theorem is used in the design of the extremum-seeking controller stucture and the development of the parameter learning laws. Numerical simulations illustrate the effectiveness of this approach.

[1]  J. Boskovic Stable adaptive control of a class of first-order nonlinearly parameterized plants , 1995, IEEE Trans. Autom. Control..

[2]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[3]  Miroslav Krstic,et al.  Stabilization of Nonlinear Uncertain Systems , 1998 .

[4]  Jan Sternby,et al.  Extremum control systems¿An area for adaptive control? , 1980 .

[5]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[6]  John R. Beaumont,et al.  Control and Coordination in Hierarchical Systems , 1981 .

[7]  Miroslav Krstic,et al.  Stability of extremum seeking feedback for general nonlinear dynamic systems , 2000, Autom..

[8]  B. Erik Ydstie,et al.  Adaptive extremum control using approximate process models , 1989 .

[9]  Miroslav Krstic,et al.  Optimizing bioreactors by extremum seeking , 1999 .

[10]  Jukka Ranta,et al.  Procedures for parameter and state estimation of microbial growth process models , 1982, Autom..

[11]  Jason L. Speyer,et al.  Peak-seeking control with application to formation flight , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[12]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[13]  Sigurd Skogestad Plantwide control: the search for the self-optimizing control structure , 2000 .

[14]  M. Krstić,et al.  Design and stability analysis of extremum seeking feedback for general nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[15]  Sergey V. Drakunov,et al.  ABS control using optimum search via sliding modes , 1995, IEEE Trans. Control. Syst. Technol..

[16]  Miroslav Krstic,et al.  Performance improvement and limitations in extremum seeking control , 2000 .

[17]  Martin Guay,et al.  Adaptive parameter estimation for microbial growth kinetics , 2002 .

[18]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[19]  M. Krstic,et al.  Experimental application of extremum seeking on an axial-flow compressor , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[20]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[21]  J. W. Modestino,et al.  Adaptive Control , 1998 .

[22]  Ravi N. Banavar,et al.  Extremum seeking loops with assumed functions , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[23]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[24]  Manfred Morari,et al.  Studies in the synthesis of control structures for chemical processes: Part I: Formulation of the problem. Process decomposition and the classification of the control tasks. Analysis of the optimizing control structures , 1980 .

[25]  Darrell Williamson,et al.  State and parameter estimation of microbial growth processes , 1978, Autom..