Low-Rank Modeling and Its Applications in Image Analysis

Low-rank modeling generally refers to a class of methods that solves problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing, and bioinformatics. Recently, much progress has been made in theories, algorithms, and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attention to this topic. In this article, we review the recent advances of low-rank modeling, the state-of-the-art algorithms, and the related applications in image analysis. We first give an overview of the concept of low-rank modeling and the challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this article with some discussions.

[1]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[2]  Justin P. Haldar,et al.  Low-Rank Modeling of Local $k$-Space Neighborhoods (LORAKS) for Constrained MRI , 2014, IEEE Transactions on Medical Imaging.

[3]  Justin P. Haldar,et al.  Spatiotemporal imaging with partially separable functions: A matrix recovery approach , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[4]  Bamdev Mishra,et al.  A Riemannian geometry for low-rank matrix completion , 2012, ArXiv.

[5]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[6]  Alexandre Bernardino,et al.  Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition , 2013, 2013 IEEE International Conference on Computer Vision.

[7]  Olgica Milenkovic,et al.  Subspace Evolution and Transfer (SET) for Low-Rank Matrix Completion , 2010, IEEE Transactions on Signal Processing.

[8]  W. Eric L. Grimson,et al.  Model-based curve evolution technique for image segmentation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[10]  Guillaume Bouchard,et al.  Robust Bayesian Matrix Factorisation , 2011, AISTATS.

[11]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[12]  Christopher M. Bishop,et al.  Bayesian PCA , 1998, NIPS.

[13]  Shuicheng Yan,et al.  Multi-task low-rank affinity pursuit for image segmentation , 2011, 2011 International Conference on Computer Vision.

[14]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[15]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[16]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[17]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[18]  S. Osher,et al.  Fast Singular Value Thresholding without Singular Value Decomposition , 2013 .

[19]  Dong Xu,et al.  Learning by Associating Ambiguously Labeled Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[21]  Justin P. Haldar,et al.  Image Reconstruction From Highly Undersampled $( {\bf k}, {t})$-Space Data With Joint Partial Separability and Sparsity Constraints , 2012, IEEE Transactions on Medical Imaging.

[22]  Xiaowei Zhou,et al.  Low-rank modeling and its applications in medical image analysis , 2013, Defense, Security, and Sensing.

[23]  Hongdong Li,et al.  A Simple Prior-Free Method for Non-rigid Structure-from-Motion Factorization , 2012, International Journal of Computer Vision.

[24]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[25]  Maryam Fazel,et al.  Iterative reweighted algorithms for matrix rank minimization , 2012, J. Mach. Learn. Res..

[26]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[27]  Bamdev Mishra,et al.  Fixed-rank matrix factorizations and Riemannian low-rank optimization , 2012, Comput. Stat..

[28]  Michael Elad,et al.  Calibrationless parallel imaging reconstruction based on structured low‐rank matrix completion , 2013, Magnetic resonance in medicine.

[29]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[30]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[31]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[32]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[33]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[34]  Leonidas J. Guibas,et al.  Near-Optimal Joint Object Matching via Convex Relaxation , 2014, ICML.

[35]  A. Majumdar,et al.  An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. , 2011, Magnetic resonance imaging.

[36]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[37]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[38]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[39]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[40]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[41]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Anders P. Eriksson,et al.  Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[44]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[45]  Dit-Yan Yeung,et al.  Bayesian Robust Matrix Factorization for Image and Video Processing , 2013, 2013 IEEE International Conference on Computer Vision.

[46]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[47]  Neil A. Dodgson,et al.  Proceedings Ninth IEEE International Conference on Computer Vision , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[48]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[49]  Harry Shum,et al.  Principal Component Analysis with Missing Data and Its Application to Polyhedral Object Modeling , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Jieping Ye,et al.  An accelerated gradient method for trace norm minimization , 2009, ICML '09.

[51]  Pascal Frossard,et al.  Dictionary Learning , 2011, IEEE Signal Processing Magazine.

[52]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[53]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[54]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[55]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[56]  Feiping Nie,et al.  Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization , 2012, 2012 IEEE 12th International Conference on Data Mining.

[57]  Gongguo Tang,et al.  Lower Bounds on the Mean-Squared Error of Low-Rank Matrix Reconstruction , 2011, IEEE Transactions on Signal Processing.

[58]  Chao Yang,et al.  Parsing façade with rank-one approximation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[60]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[61]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[62]  Hanjiang Lai,et al.  A Divide-and-Conquer Method for Scalable Low-Rank Latent Matrix Pursuit , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[64]  Mathews Jacob,et al.  Accelerated Dynamic MRI Exploiting Sparsity and Low-Rank Structure: k-t SLR , 2011, IEEE Transactions on Medical Imaging.

[65]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[66]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[67]  Zhi-Pei Liang,et al.  Spatiotemporal Imaging with Partially Separable Functions , 2007, 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging.

[68]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[69]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[70]  Justin P. Haldar,et al.  Low-rank approximations for dynamic imaging , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[71]  Justin P. Haldar,et al.  Low rank matrix recovery for real-time cardiac MRI , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[72]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[73]  Dong Liu,et al.  Robust late fusion with rank minimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[74]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[75]  Pei Chen,et al.  Optimization Algorithms on Subspaces: Revisiting Missing Data Problem in Low-Rank Matrix , 2008, International Journal of Computer Vision.

[76]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[77]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[78]  René Vidal,et al.  Motion Segmentation in the Presence of Outlying, Incomplete, or Corrupted Trajectories , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[80]  James S. Duncan,et al.  Active Contours with Group Similarity , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[81]  Lei Zhang,et al.  Weighted Nuclear Norm Minimization with Application to Image Denoising , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[82]  H. Parthasarathy,et al.  NemaFootPrinter: a web based software for the identification of conserved non-coding genome sequence regions between C. elegans and C. briggsae , 1981, Nature Immunology.

[83]  Christopher Ré,et al.  Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.

[84]  Marc Pollefeys,et al.  The generalized trace-norm and its application to structure-from-motion problems , 2011, 2011 International Conference on Computer Vision.

[85]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[86]  Ying Wu,et al.  A unified approach to salient object detection via low rank matrix recovery , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[87]  Yi Ma,et al.  TILT: Transform Invariant Low-Rank Textures , 2010, ACCV 2010.

[88]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[89]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[90]  Marie Michenkova Numerical algorithms for low-rank matrix completion problems , 2011 .

[91]  Goran Marjanovic,et al.  On $l_q$ Optimization and Matrix Completion , 2012, IEEE Transactions on Signal Processing.

[92]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[93]  Mathews Jacob,et al.  Blind Compressive Sensing Dynamic MRI , 2013, IEEE Transactions on Medical Imaging.

[94]  Yi Ma,et al.  Repairing Sparse Low-Rank Texture , 2012, ECCV.

[95]  M. Fazel,et al.  Iterative reweighted least squares for matrix rank minimization , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[96]  Takayuki Okatani,et al.  Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms , 2011, 2011 International Conference on Computer Vision.

[97]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[98]  Junzhou Huang,et al.  Background Subtraction Using Low Rank and Group Sparsity Constraints , 2012, ECCV.

[99]  Shuicheng Yan,et al.  Generalized Nonconvex Nonsmooth Low-Rank Minimization , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[100]  Ivan Markovsky,et al.  Low Rank Approximation - Algorithms, Implementation, Applications , 2018, Communications and Control Engineering.

[101]  Andrea Montanari,et al.  Low-rank matrix completion with noisy observations: A quantitative comparison , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[102]  Habib Zaidi,et al.  Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. , 2009, Medical physics.

[103]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[104]  Shuicheng Yan,et al.  Practical low-rank matrix approximation under robust L1-norm , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[105]  Masashi Sugiyama,et al.  A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices , 2010, ICML.

[106]  Larry S. Davis,et al.  Learning Structured Low-Rank Representations for Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[107]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[108]  Geoffrey J. Gordon,et al.  A Unified View of Matrix Factorization Models , 2008, ECML/PKDD.

[109]  Jiang Du,et al.  Noise reduction in multiple-echo data sets using singular value decomposition. , 2006, Magnetic resonance imaging.

[110]  Minh N. Do,et al.  Spatiotemporal denoising of MR spectroscopic imaging data by low-rank approximations , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[111]  Changsheng Xu,et al.  Low-Rank Sparse Coding for Image Classification , 2013, 2013 IEEE International Conference on Computer Vision.

[112]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Ying Zhang,et al.  Restricted $p$ -Isometry Properties of Nonconvex Matrix Recovery , 2013, IEEE Transactions on Information Theory.

[114]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[115]  Olgica Milenkovic,et al.  SET: An algorithm for consistent matrix completion , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[116]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[117]  Zuowei Shen,et al.  Robust video denoising using low rank matrix completion , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[118]  Zhi-Pei Liang,et al.  SPATIOTEMPORAL IMAGINGWITH PARTIALLY SEPARABLE FUNCTIONS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[119]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[120]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[121]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[122]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[123]  Ameet Talwalkar,et al.  Divide-and-Conquer Matrix Factorization , 2011, NIPS.

[124]  Steve B. Jiang,et al.  Cine Cone Beam CT Reconstruction Using Low-Rank Matrix Factorization: Algorithm and a Proof-of-Principle Study , 2012, IEEE Transactions on Medical Imaging.

[125]  Zhi-Pei Liang,et al.  Accelerating cardiovascular imaging by exploiting regional low-rank structure via group sparsity , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[126]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[127]  Peter J. Haas,et al.  Large-scale matrix factorization with distributed stochastic gradient descent , 2011, KDD.

[128]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[129]  Daphna Weinshall,et al.  Online Learning in the Embedded Manifold of Low-rank Matrices , 2012, J. Mach. Learn. Res..

[130]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[131]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[132]  Narendra Ahuja,et al.  Robust Orthonormal Subspace Learning: Efficient Recovery of Corrupted Low-Rank Matrices , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[133]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[134]  René Vidal,et al.  Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, CVPR.

[135]  Andrew W. Fitzgibbon,et al.  Damped Newton algorithms for matrix factorization with missing data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[136]  Yu-Chiang Frank Wang,et al.  Low-rank matrix recovery with structural incoherence for robust face recognition , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[137]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[138]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[139]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[141]  YangCan,et al.  Low-Rank Modeling and Its Applications in Image Analysis , 2014 .

[142]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[143]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[144]  Emmanuel J. Candès,et al.  Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators , 2012, IEEE Transactions on Signal Processing.

[145]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[146]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[147]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[148]  Gilles Meyer,et al.  Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries , 2012, Computational Statistics.

[149]  Henrik Aanæs,et al.  Robust Factorization , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[150]  Aggelos K. Katsaggelos,et al.  Sparse Bayesian Methods for Low-Rank Matrix Estimation , 2011, IEEE Transactions on Signal Processing.

[151]  Joshua D. Trzasko,et al.  Exploiting local low-rank structure in higher-dimensional MRI applications , 2013, Optics & Photonics - Optical Engineering + Applications.

[152]  Loong Fah Cheong,et al.  Block-Sparse RPCA for Consistent Foreground Detection , 2012, ECCV.

[153]  Zheng-Hai Huang,et al.  A reweighted nuclear norm minimization algorithm for low rank matrix recovery , 2014, J. Comput. Appl. Math..

[154]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[155]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[156]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[157]  Norbert Schuff,et al.  Denoising diffusion-weighted MR magnitude image sequences using low rank and edge constraints , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[158]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[159]  Jing Xiao,et al.  A Closed-Form Solution to Non-Rigid Shape and Motion Recovery , 2004, International Journal of Computer Vision.

[160]  Michal Irani,et al.  Multi-Frame Correspondence Estimation Using Subspace Constraints , 2002, International Journal of Computer Vision.

[161]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[162]  James S. Duncan,et al.  Segmentation of the Left Ventricle From Cardiac MR Images Using a Subject-Specific Dynamical Model , 2010, IEEE Transactions on Medical Imaging.

[163]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[164]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[165]  Takayuki Okatani,et al.  On the Wiberg Algorithm for Matrix Factorization in the Presence of Missing Components , 2007, International Journal of Computer Vision.

[166]  Silvere Bonnabel,et al.  Linear Regression under Fixed-Rank Constraints: A Riemannian Approach , 2011, ICML.

[167]  Deyu Meng,et al.  Robust Matrix Factorization with Unknown Noise , 2013, 2013 IEEE International Conference on Computer Vision.

[168]  Emmanuel J. Candès,et al.  Low-rank + sparse (L+S) reconstruction for accelerated dynamic MRI with seperation of background and dynamic components , 2013, Optics & Photonics - Optical Engineering + Applications.

[169]  Hongkai Zhao,et al.  Robust principal component analysis-based four-dimensional computed tomography , 2011, Physics in medicine and biology.

[170]  Justin P. Haldar,et al.  Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization , 2009, IEEE Signal Processing Letters.

[171]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[172]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[173]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[174]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[175]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[176]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[177]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[178]  Xuelong Li,et al.  Matrix completion by Truncated Nuclear Norm Regularization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[179]  Dong Xu,et al.  Finding Correspondence from Multiple Images via Sparse and Low-Rank Decomposition , 2012, ECCV.

[180]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[181]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[182]  Yousef Saad,et al.  Scaled Gradients on Grassmann Manifolds for Matrix Completion , 2012, NIPS.

[183]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[184]  Angshul Majumdar,et al.  Exploiting rank deficiency and transform domain sparsity for MR image reconstruction. , 2012, Magnetic resonance imaging.

[185]  Jang-Gyu Lee,et al.  On updating the singular value decomposition , 1996, Proceedings of International Conference on Communication Technology. ICCT '96.

[186]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.

[187]  Takeo Kanade,et al.  Shape and motion from image streams under orthography: a factorization method , 1992, International Journal of Computer Vision.

[188]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[189]  Lourdes Agapito,et al.  A Variational Approach to Video Registration with Subspace Constraints , 2013, International Journal of Computer Vision.

[190]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[191]  Bamdev Mishra,et al.  Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..