COLUMBUS: Automated Discovery of New Multi-Level Features for Domain Generalization via Knowledge Corruption

Machine learning models that can generalize to unseen domains are essential when applied in real-world scenarios involving strong domain shifts. We address the challenging domain generalization (DG) problem, where a model trained on a set of source domains is expected to generalize well in unseen domains without any exposure to their data. The main challenge of DG is that the features learned from the source domains are not necessarily present in the unseen target domains, leading to performance deterioration. We assume that learning a richer set of features is crucial to improve the transfer to a wider set of unknown domains. For this reason, we propose COLUMBUS, a method that enforces new feature discovery via a targeted corruption of the most relevant input and multi-level representations of the data. We conduct an extensive empirical evaluation to demonstrate the effectiveness of the proposed approach which achieves new state-of-the-art results by outperforming 18 DG algorithms on multiple DG benchmark datasets in the DOMAINBED framework.

[1]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[2]  Gilles Blanchard,et al.  Generalizing from Several Related Classification Tasks to a New Unlabeled Sample , 2011, NIPS.

[3]  Diane J. Cook,et al.  A Survey of Unsupervised Deep Domain Adaptation , 2018, ACM Trans. Intell. Syst. Technol..

[4]  Sjoerd van Steenkiste,et al.  Are Disentangled Representations Helpful for Abstract Visual Reasoning? , 2019, NeurIPS.

[5]  Bolei Zhou,et al.  Learning Deep Features for Discriminative Localization , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Luigi Gresele,et al.  Learning explanations that are hard to vary , 2020, ArXiv.

[7]  David Lopez-Paz,et al.  In Search of Lost Domain Generalization , 2020, ICLR.

[8]  D. Tao,et al.  Deep Domain Generalization via Conditional Invariant Adversarial Networks , 2018, ECCV.

[9]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[10]  Bohyung Han,et al.  Learning to Optimize Domain Specific Normalization for Domain Generalization , 2019, ECCV.

[11]  Cuntai Guan,et al.  A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Kartik Ahuja,et al.  SAND-mask: An Enhanced Gradient Masking Strategy for the Discovery of Invariances in Domain Generalization , 2021, ArXiv.

[13]  Tatiana Tommasi,et al.  Rethinking Domain Generalization Baselines , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[14]  Sethuraman Panchanathan,et al.  Deep Hashing Network for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[16]  Pong C. Yuen,et al.  Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Chih-Yao Ma,et al.  Frustratingly Simple Domain Generalization via Image Stylization , 2020, ArXiv.

[18]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[19]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[20]  Swami Sankaranarayanan,et al.  MetaReg: Towards Domain Generalization using Meta-Regularization , 2018, NeurIPS.

[21]  Alberto L. Sangiovanni-Vincentelli,et al.  Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[23]  Sridha Sridharan,et al.  Correlation-aware Adversarial Domain Adaptation and Generalization , 2019, Pattern Recognit..

[24]  Bingbing Ni,et al.  Adversarial Domain Adaptation with Domain Mixup , 2019, AAAI.

[25]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[26]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[27]  Gilles Blanchard,et al.  Domain Generalization by Marginal Transfer Learning , 2017, J. Mach. Learn. Res..

[28]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[29]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[30]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[31]  Siddhartha Chaudhuri,et al.  Generalizing Across Domains via Cross-Gradient Training , 2018, ICLR.

[32]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[34]  Philip H.S. Torr,et al.  Gradient Matching for Domain Generalization , 2021, ArXiv.

[35]  Alexander Binder,et al.  Explaining nonlinear classification decisions with deep Taylor decomposition , 2015, Pattern Recognit..

[36]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[37]  Zhitao Gong,et al.  Strike (With) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Prasad Patil,et al.  Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations , 2020, ArXiv.

[39]  Shruti Tople,et al.  Domain Generalization using Causal Matching , 2020, ICML.

[40]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[41]  Silvio Savarese,et al.  Generalizing to Unseen Domains via Adversarial Data Augmentation , 2018, NeurIPS.

[42]  John C. Duchi,et al.  Certifying Some Distributional Robustness with Principled Adversarial Training , 2017, ICLR.

[43]  Sridha Sridharan,et al.  Multi-Component Image Translation for Deep Domain Generalization , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[44]  Martin Wattenberg,et al.  SmoothGrad: removing noise by adding noise , 2017, ArXiv.

[45]  Fabio Maria Carlucci,et al.  Hallucinating Agnostic Images to Generalize Across Domains , 2018, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[46]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[47]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[48]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[50]  Ghassan Hamarneh,et al.  Generalizable Feature Learning in the Presence of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification , 2019, MICCAI.

[51]  Tao Xiang,et al.  Learning to Generate Novel Domains for Domain Generalization , 2020, ECCV.

[52]  Seunghyun Park,et al.  SelfReg: Self-supervised Contrastive Regularization for Domain Generalization , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[53]  Daniel C. Castro,et al.  Domain Generalization via Model-Agnostic Learning of Semantic Features , 2019, NeurIPS.

[54]  Donald A. Adjeroh,et al.  Unified Deep Supervised Domain Adaptation and Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[55]  Yongxin Yang,et al.  Learning to Generalize: Meta-Learning for Domain Generalization , 2017, AAAI.

[56]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[57]  Tao Xiang,et al.  Domain Generalization with MixStyle , 2021, ICLR.

[58]  Yufei Wang,et al.  Heterogeneous Domain Generalization Via Domain Mixup , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[59]  Lincan Zou,et al.  Improve Unsupervised Domain Adaptation with Mixup Training , 2020, ArXiv.

[60]  Tao Xiang,et al.  Domain Generalization: A Survey , 2021, ArXiv.

[61]  Ye Xu,et al.  Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias , 2013, 2013 IEEE International Conference on Computer Vision.

[62]  Tao Xiang,et al.  Deep Domain-Adversarial Image Generation for Domain Generalisation , 2020, AAAI.

[63]  Xi Peng,et al.  Learning to Learn Single Domain Generalization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[65]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[66]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[67]  Eric P. Xing,et al.  Self-Challenging Improves Cross-Domain Generalization , 2020, ECCV.

[68]  Ioannis Mitliagkas,et al.  Generalizing to unseen domains via distribution matching , 2019 .

[69]  Donggeun Yoo,et al.  Reducing Domain Gap via Style-Agnostic Networks , 2019, ArXiv.