A tutorial on Gaussian process regression with a focus on exploration-exploitation scenarios

This tutorial introduces the reader to Gaussian process regression as a tool to model, actively explore and exploit unknown functions. Gaussian process regression is a powerful, non-parametric Bayesian approach towards regression problems that can be utilized in exploration and exploitation scenarios. This tutorial aims to provide an accessible introduction to these techniques. We will introduce Gaussian processes as a distribution over functions used for Bayesian non-parametric regression and demonstrate different applications of it. Didactic examples will include a simple regression problem, a demonstration of kernel-encoded prior assumptions, a pure exploration scenario within an optimal design framework, and a bandit-like exploration-exploitation scenario where the goal is to recommend movies. Beyond that, we describe a situation in which an additional constraint (not to sample below a certain threshold) needs to be accounted for and summarize recent psychological experiments utilizing Gaussian processes. Software and literature pointers will be provided.

[1]  Christopher K. I. Williams Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.

[2]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[3]  José Miguel Hernández-Lobato,et al.  Quantifying mismatch in Bayesian optimization , 2016, NIPS 2016.

[4]  C.H. Lee A phase space spline smoother for fitting trajectories , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Andreas Krause,et al.  Better safe than sorry: Risky function exploitation through safe optimization , 2016, CogSci.

[6]  Bernhard Schölkopf,et al.  A tutorial on kernel methods for categorization , 2007, Journal of Mathematical Psychology.

[7]  H. Akaike A new look at the statistical model identification , 1974 .

[8]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[9]  Alexander J. Smola,et al.  Regret Bounds for Deterministic Gaussian Process Bandits , 2012, ArXiv.

[10]  Jay I. Myung,et al.  On the functional form of temporal discounting: An optimized adaptive test , 2016, Journal of risk and uncertainty.

[11]  Jonas Mockus Bayesian Heuristic Approach to Discrete and Global Optimization: Algorithms, Visualization, Software, and Applications , 1996 .

[12]  Alkis Gotovos,et al.  Safe Exploration for Optimization with Gaussian Processes , 2015, ICML.

[13]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[14]  KrauseAndreas,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2012 .

[15]  M. Speekenbrink,et al.  Putting bandits into context: How function learning supports decision making , 2016, bioRxiv.

[16]  Christopher G. Lucas,et al.  A rational model of function learning , 2015, Psychonomic Bulletin & Review.

[17]  M. Lee,et al.  A Bayesian analysis of human decision-making on bandit problems , 2009 .

[18]  R. Simon,et al.  Flexible regression models with cubic splines. , 1989, Statistics in medicine.

[19]  Joel W. Burdick,et al.  An Active Learning Algorithm for Control of Epidural Electrostimulation , 2015, IEEE Transactions on Biomedical Engineering.

[20]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[21]  Felix Henninger,et al.  Mousetrap: An integrated, open-source mouse-tracking package , 2017, Behavior Research Methods.

[22]  Joshua B. Tenenbaum,et al.  Probing the Compositionality of Intuitive Functions , 2016, NIPS.

[23]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[24]  Jonathan D. Nelson,et al.  Information search with situation-specific reward functions , 2012, Judgment and Decision Making.

[25]  Joshua B. Tenenbaum,et al.  Automatic Construction and Natural-Language Description of Nonparametric Regression Models , 2014, AAAI.

[26]  Andrew Gordon Wilson,et al.  The Human Kernel , 2015, NIPS.

[27]  Daniel W. Apley,et al.  Local Gaussian Process Approximation for Large Computer Experiments , 2013, 1303.0383.

[28]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[29]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[30]  Joshua B. Tenenbaum,et al.  Multistability and Perceptual Inference , 2012, Neural Computation.

[31]  Andreas Krause,et al.  Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics , 2016, Machine Learning.

[32]  Ali Borji,et al.  Bayesian optimization explains human active search , 2013, NIPS.

[33]  Andrew Gordon Wilson,et al.  Gaussian Process Kernels for Pattern Discovery and Extrapolation , 2013, ICML.

[34]  Jonathan B Freeman,et al.  MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method , 2010, Behavior research methods.

[35]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[36]  W. R. Thompson ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES , 1933 .

[37]  Joshua B. Tenenbaum,et al.  Assessing the Perceived Predictability of Functions , 2015, CogSci.

[38]  M. Kac,et al.  An Explicit Representation of a Stationary Gaussian Process , 1947 .

[39]  E. Wagenmakers,et al.  Bayesian parameter estimation in the Expectancy Valence model of the Iowa gambling task , 2010 .

[40]  Michael N. Katehakis,et al.  The Multi-Armed Bandit Problem: Decomposition and Computation , 1987, Math. Oper. Res..

[41]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[42]  Andreas Krause,et al.  SFO: A Toolbox for Submodular Function Optimization , 2010, J. Mach. Learn. Res..

[43]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[44]  R. Ratcliff,et al.  Estimation and interpretation of 1/fα noise in human cognition , 2004 .

[45]  Samuel J. Gershman,et al.  Structured Representations of Utility in Combinatorial Domains , 2017 .

[46]  Joshua B. Tenenbaum,et al.  Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.

[47]  Jay I. Myung,et al.  Optimal experimental design for model discrimination. , 2009, Psychological review.

[48]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[49]  Ralf Engbert,et al.  Microsaccades Keep the Eyes' Balance During Fixation , 2004, Psychological science.

[50]  Jay I. Myung,et al.  A Tutorial on Adaptive Design Optimization. , 2013, Journal of mathematical psychology.

[51]  Robert B. Gramacy,et al.  tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models , 2007 .

[52]  Michael A. Osborne,et al.  Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.