Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex

[1]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[2]  V. Ramachandran,et al.  Visual inertia in apparent motion , 1987, Vision Research.

[3]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[4]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[5]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[6]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[7]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  W. H. Ehrenstein,et al.  A constant latency difference determines directional anisotropy in visual motion perception , 1991, Vision Research.

[9]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[10]  Andrew P. Duchon,et al.  The human visual system averages speed information , 1992, Vision Research.

[11]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[12]  P. Thompson,et al.  Human speed perception is contrast dependent , 1992, Vision Research.

[13]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[14]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[15]  Joab R Winkler,et al.  Numerical recipes in C: The art of scientific computing, second edition , 1993 .

[16]  O. Hikosaka,et al.  Focal visual attention produces illusory temporal order and motion sensation , 1993, Vision Research.

[17]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[19]  S. McKee,et al.  Detecting a trajectory embedded in random-direction motion noise , 1995, Vision Research.

[20]  T. Sejnowski,et al.  A selection model for motion processing in area MT of primates , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  S. Grossberg,et al.  Cortical dynamics of form and motion integration: Persistence, apparent motion, and illusory contours , 1996, Vision Research.

[22]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[23]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  B. Richmond,et al.  Latency: another potential code for feature binding in striate cortex. , 1996, Journal of neurophysiology.

[25]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[26]  V. Bringuier,et al.  Spatio-temporal dynamics of synaptic integration in cat visual cortical receptive fields , 1996 .

[27]  W Singer,et al.  The Perceptual Grouping Criterion of Colinearity is Reflected by Anisotropies of Connections in the Primary Visual Cortex , 1997, The European journal of neuroscience.

[28]  Steven C. Dakin,et al.  Absence of contour linking in peripheral vision , 1997, Nature.

[29]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[30]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[31]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[32]  S. Grossberg,et al.  Neural dynamics of motion processing and speed discrimination , 1998, Vision Research.

[33]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[34]  C. Gilbert,et al.  Topography of contextual modulations mediated by short-range interactions in primary visual cortex , 1999, Nature.

[35]  U. Polat Functional architecture of long-range perceptual interactions. , 1999, Spatial vision.

[36]  D. Field,et al.  Integration of contours: new insights , 1999, Trends in Cognitive Sciences.

[37]  V. Bringuier,et al.  Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. , 1999, Science.

[38]  Johannes M. Zanker,et al.  Speed tuning in elementary motion detectors of the correlation type , 1999, Biological Cybernetics.

[39]  R. Snowden,et al.  The Effect of Contrast upon Perceived Speed: A General Phenomenon? , 1999, Perception.

[40]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.

[41]  P. Cavanagh,et al.  Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli , 2000, Vision Research.

[42]  D. Fitzpatrick Seeing beyond the receptive field in primary visual cortex , 2000, Current Opinion in Neurobiology.

[43]  D. Heeger,et al.  Center-surround interactions in foveal and peripheral vision , 2000, Vision Research.

[44]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[45]  Contrast dependence of high-speed apparent motion , 2000 .

[46]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[47]  M. Sur,et al.  Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. , 2000, Journal of neurophysiology.

[48]  Y Watanabe,et al.  Properties of Horizontal and Vertical Inputs to Pyramidal Cells in the Superficial Layers of the Cat Visual Cortex , 2000, The Journal of Neuroscience.

[49]  D. G. Albrecht,et al.  Motion direction signals in the primary visual cortex of cat and monkey. , 2001, Visual neuroscience.

[50]  Lawrence C. Sincich,et al.  Oriented Axon Projections in Primary Visual Cortex of the Monkey , 2001, The Journal of Neuroscience.

[51]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[52]  D. Heeger,et al.  Measurement and modeling of center-surround suppression and enhancement , 2001, Vision Research.

[53]  J. B. Levitt,et al.  Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. , 2002, Progress in brain research.

[54]  Jean Lorenceau,et al.  Orientation dependent modulation of apparent speed: psychophysical evidence , 2002, Vision Research.

[55]  P. Verghese,et al.  Integration of speed signals in the direction of motion , 2002, Perception & psychophysics.

[56]  R. Vautin,et al.  Magnification factor and receptive field size in foveal striate cortex of the monkey , 2004, Experimental Brain Research.

[57]  F. Wörgötter,et al.  Axis of preferred motion is a function of bar length in visual cortical receptive fields , 2004, Experimental Brain Research.