A catalog of inverse-kinematics planners for underactuated systems on matrix Lie groups

This paper presents motion planning algorithms for underactuated systems evolving on rigid rotation and displacement groups. Motion planning is transcribed into (low-dimensional) combinatorial selection and inverse-kinematics problems. We present a catalog of solutions for all underactuated systems on SE(2), SO(3) and SE(2) /spl times/ /spl Ropf/ classified according to their controllability properties.

[1]  Gerardo Lafferriere,et al.  A Differential Geometric Approach to Motion Planning , 1993 .

[2]  Naomi Ehrich Leonard,et al.  Motion control of drift-free, left-invariant systems on Lie groups , 1995, IEEE Trans. Autom. Control..

[3]  A. D. Lewis,et al.  When is a mechanical control system kinematic? , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[4]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[5]  Shuzhi Sam Ge,et al.  Feedback linearization and stabilization of second-order non-holonomic chained systems , 2001 .

[6]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[7]  Jorge Cortes,et al.  A catalog of inverse-kinematics planners for underactuated systems on matrix groups , 2003 .

[8]  Beno Benhabib,et al.  A complete generalized solution to the inverse kinematics of robots , 1985, IEEE J. Robotics Autom..

[9]  Francesco Bullo,et al.  Kinematic controllability and motion planning for the snakeboard , 2003, IEEE Trans. Robotics Autom..

[10]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[11]  C. Samson Control of chained systems application to path following and time-varying point-stabilization of mobile robots , 1995, IEEE Trans. Autom. Control..

[12]  Naomi Ehrich Leonard,et al.  Motion Control of Drift-Free, , 1995 .

[13]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[14]  Sonia Martínez,et al.  Motion Planning and Control Problems for Underactuated Robots , 2003, Control Problems in Robotics.

[15]  Bradley Evan Paden,et al.  Kinematics and Control of Robot Manipulators , 1985 .

[16]  P. B. Davenport,et al.  Rotations about nonorthogonal axes. , 1973 .

[17]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[18]  Kevin M. Lynch,et al.  Minimum control-switch motions for the snakeboard: a case study in kinematically controllable underactuated systems , 2004, IEEE Transactions on Robotics.

[19]  James U. Korein,et al.  Robotics , 2018, IBM Syst. J..

[20]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[21]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[22]  Naoji Shiroma,et al.  Collision-Free Trajectory Planning for a 3-DoF Robot with a Passive Joint , 2000, Int. J. Robotics Res..

[23]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..

[24]  Naoji Shiroma,et al.  Nonholonomic control of a three-DOF planar underactuated manipulator , 1998, IEEE Trans. Robotics Autom..

[25]  O. J. Sørdalen,et al.  Exponential stabilization of nonholonomic chained systems , 1995, IEEE Trans. Autom. Control..

[26]  Francesco Bullo,et al.  Low-Order Controllability and Kinematic Reductions for Affine Connection Control Systems , 2005, SIAM J. Control. Optim..

[27]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[28]  A. D. Lewis,et al.  Controllable kinematic reductions for mechanical systems: concepts,computational tools, and examples , 2001 .

[29]  Kevin M. Lynch,et al.  Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems , 2001, IEEE Trans. Robotics Autom..

[30]  F. Bullo,et al.  On quantization and optimal control of dynamical systems with symmetries , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[31]  J. Wittenburg,et al.  Decomposition of a Finite Rotation into Three Rotations about Given Axes , 2003 .