Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps

Cognitive maps enable efficient inferences from limited experience that can guide novel decisions. We tested whether the hippocampus (HC), entorhinal cortex (EC), and ventromedial prefrontal cortex (vmPFC)/medial orbitofrontal cortex (mOFC) organize abstract and discrete relational information into a cognitive map to guide novel inferences. Subjects learned the status of people in two unseen 2D social hierarchies, with each dimension learned on a separate day. Although one dimension was behaviorally relevant, multivariate activity patterns in HC, EC, and vmPFC/mOFC were linearly related to the Euclidean distance between people in the mentally reconstructed 2D space. Hubs created unique comparisons between the hierarchies, enabling inferences between novel pairs. We found that both behavior and neural activity in EC and vmPFC/mOFC reflected the Euclidean distance to the retrieved hub, which was reinstated in HC. These findings reveal how abstract and discrete relational structures are represented, are combined, and enable novel inferences in the human brain.

[1]  James L. McClelland,et al.  Generalization Through the Recurrent Interaction of Episodic Memories , 2012, Psychological review.

[2]  N. Cohen,et al.  Declarative memory is critical for sustained advantageous complex decision-making , 2009, Neuropsychologia.

[3]  Timothy E. J. Behrens,et al.  Review Frontal Cortex and Reward-guided Learning and Decision-making Figure 1. Frontal Brain Regions in the Macaque Involved in Reward-guided Learning and Decision-making Finer Grained Anatomical Divisions with Frontal Cortical Systems for Reward-guided Behavior , 2022 .

[4]  M. Rushworth,et al.  Distinct Roles of Three Frontal Cortical Areas in Reward-Guided Behavior , 2011, The Journal of Neuroscience.

[5]  Zeb Kurth-Nelson,et al.  What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior , 2018, Neuron.

[6]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[7]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[8]  Nikolaus Weiskopf,et al.  Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T , 2006, NeuroImage.

[9]  B. Hayden,et al.  A distributed, hierarchical and recurrent framework for reward-based choice , 2017, Nature Reviews Neuroscience.

[10]  Anna S. Mitchell,et al.  A Neural Circuit Covarying with Social Hierarchy in Macaques , 2014, PLoS biology.

[11]  Xiaojun Bao,et al.  Grid-like Neural Representations Support Olfactory Navigation of a Two-Dimensional Odor Space , 2019, Neuron.

[12]  H. Eichenbaum,et al.  Interplay of Hippocampus and Prefrontal Cortex in Memory , 2013, Current Biology.

[13]  P. Hluštík,et al.  Effects of spatial smoothing on fMRI group inferences. , 2008, Magnetic resonance imaging.

[14]  M. Shapiro,et al.  A Map for Social Navigation in the Human Brain , 2015, Neuron.

[15]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[16]  Yael Niv,et al.  A Probability Distribution over Latent Causes, in the Orbitofrontal Cortex , 2016, The Journal of Neuroscience.

[17]  Timothy Edward John Behrens,et al.  How Green Is the Grass on the Other Side? Frontopolar Cortex and the Evidence in Favor of Alternative Courses of Action , 2009, Neuron.

[18]  Helen C. Barron,et al.  Repetition suppression: a means to index neural representations using BOLD? , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  Li Su,et al.  A Toolbox for Representational Similarity Analysis , 2014, PLoS Comput. Biol..

[20]  Christian F. Doeller,et al.  The Hippocampus Encodes Distances in Multidimensional Feature Space , 2019, Current Biology.

[21]  H. Eichenbaum,et al.  Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? , 2014, Neuron.

[22]  György Buzsáki,et al.  Cognitive neuroscience: Time, space and memory , 2013, Nature.

[23]  Timothy E. J. Behrens,et al.  Organizing conceptual knowledge in humans with a gridlike code , 2016, Science.

[24]  Andrew M. Wikenheiser,et al.  Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex , 2016, Nature Reviews Neuroscience.

[25]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[26]  Timothy Edward John Behrens,et al.  Two Anatomically and Computationally Distinct Learning Signals Predict Changes to Stimulus-Outcome Associations in Hippocampus , 2016, Neuron.

[27]  D. Shohamy,et al.  Preference by Association: How Memory Mechanisms in the Hippocampus Bias Decisions , 2012, Science.

[28]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[29]  Tommy C. Blanchard,et al.  Reward Value Comparison via Mutual Inhibition in Ventromedial Prefrontal Cortex , 2014, Neuron.

[30]  David J. Foster,et al.  Memory and Space: Towards an Understanding of the Cognitive Map , 2015, The Journal of Neuroscience.

[31]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[32]  Razvan Pascanu,et al.  Vector-based navigation using grid-like representations in artificial agents , 2018, Nature.

[33]  Kurt Gray,et al.  The MR2: A multi-racial, mega-resolution database of facial stimuli , 2016, Behavior research methods.

[34]  G. Buzsáki,et al.  Space and Time: The Hippocampus as a Sequence Generator , 2018, Trends in Cognitive Sciences.

[35]  H. Eichenbaum,et al.  The medial temporal lobe and recognition memory. , 2007, Annual review of neuroscience.

[36]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[37]  Edvard I. Moser,et al.  Speed cells in the medial entorhinal cortex , 2015, Nature.

[38]  Timothy E. J. Behrens,et al.  An Agent Independent Axis for Executed and Modeled Choice in Medial Prefrontal Cortex , 2012, Neuron.

[39]  Tobias Navarro Schröder,et al.  Hexadirectional coding of visual space in human entorhinal cortex , 2018, Nature Neuroscience.

[40]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[41]  Margaret L. Schlichting,et al.  Memory reactivation during rest supports upcoming learning of related content , 2014, Proceedings of the National Academy of Sciences.

[42]  Caswell Barry,et al.  The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation , 2019, Cell.

[43]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[44]  D. Kumaran,et al.  The Emergence and Representation of Knowledge about Social and Nonsocial Hierarchies , 2012, Neuron.

[45]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[46]  J L Andersson,et al.  Social Network Size Affects Neural Circuits in Macaques , 2011, Science.

[47]  Lila Davachi,et al.  Consolidation Promotes the Emergence of Representational Overlap in the Hippocampus and Medial Prefrontal Cortex , 2017, Neuron.

[48]  Michael R. Meager,et al.  Hippocampal Contributions to Model-Based Planning and Spatial Memory , 2019, Neuron.

[49]  Robert C. Wilson,et al.  Is Model Fitting Necessary for Model-Based fMRI? , 2015, PLoS Comput. Biol..

[50]  Arne D. Ekstrom,et al.  Space, time, and episodic memory: The hippocampus is all over the cognitive map , 2018, Hippocampus.

[51]  Joshua L. Jones,et al.  Orbitofrontal Cortex Supports Behavior and Learning Using Inferred But Not Cached Values , 2012, Science.

[52]  Timothy Edward John Behrens,et al.  Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning , 2010, Neuron.

[53]  H. Eichenbaum Prefrontal–hippocampal interactions in episodic memory , 2017, Nature Reviews Neuroscience.

[54]  Bolton K. H. Chau,et al.  Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task , 2017, Nature Communications.

[55]  J. O'Doherty,et al.  Evidence for a Common Representation of Decision Values for Dissimilar Goods in Human Ventromedial Prefrontal Cortex , 2009, The Journal of Neuroscience.

[56]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[57]  Neal J. Cohen,et al.  The role of the hippocampus in flexible cognition and social behavior , 2014, Front. Hum. Neurosci..

[58]  Thomas H. B. FitzGerald,et al.  The Role of Human Orbitofrontal Cortex in Value Comparison for Incommensurable Objects , 2009, The Journal of Neuroscience.

[59]  Jonathan D. Cohen,et al.  Indirection and symbol-like processing in the prefrontal cortex and basal ganglia , 2013, Proceedings of the National Academy of Sciences.

[60]  Hannah M. Batchelor,et al.  Dopamine Neurons Respond to Errors in the Prediction of Sensory Features of Expected Rewards , 2017, Neuron.

[61]  Antonio Rangel,et al.  The Decision Value Computations in the vmPFC and Striatum Use a Relative Value Code That is Guided by Visual Attention , 2011, The Journal of Neuroscience.

[62]  A. Alink,et al.  Inferring exemplar discriminability in brain representations , 2020, PloS one.

[63]  Jörn Diedrichsen,et al.  Reliability of dissimilarity measures for multi-voxel pattern analysis , 2016, NeuroImage.

[64]  William B. Levy,et al.  When logic fails: Implicit transitive inference in humans , 2005, Memory & cognition.

[65]  Timothy H. Muller,et al.  Control of entropy in neural models of environmental state , 2019, eLife.

[66]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[67]  E. Rolls,et al.  Value, Pleasure and Choice in the Ventral Prefrontal Cortex , 2022 .

[68]  M. Woolrich,et al.  Mechanisms underlying cortical activity during value-guided choice , 2011, Nature Neuroscience.

[69]  Karl J. Friston,et al.  Entorhinal transformations in abstract frames of reference , 2019, PLoS biology.

[70]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[71]  N. Cohen,et al.  Relational Memory and the Hippocampus: Representations and Methods , 2009, Front. Neurosci..

[72]  D. Hassabis,et al.  Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information , 2016, Neuron.

[73]  M. Rushworth,et al.  Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex , 2015, Proceedings of the National Academy of Sciences.

[74]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[75]  H. Eichenbaum On the Integration of Space, Time, and Memory , 2017, Neuron.

[76]  H. Eichenbaum,et al.  The hippocampus and memory for orderly stimulus relations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[77]  M. Mallar Chakravarty,et al.  Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol , 2015, NeuroImage.

[78]  R. Knight,et al.  The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation , 2014, Current Biology.

[79]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[80]  Lisa M. Giocomo,et al.  Remembered reward locations restructure entorhinal spatial maps , 2019, Science.

[81]  Neal J Cohen,et al.  Navigating life , 2015, Hippocampus.

[82]  Joel Z. Leibo,et al.  Prefrontal cortex as a meta-reinforcement learning system , 2018, bioRxiv.

[83]  Neil Burgess,et al.  Using Grid Cells for Navigation , 2015, Neuron.

[84]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[85]  Lesley K Fellows,et al.  Contrasting Effects of Medial and Lateral Orbitofrontal Cortex Lesions on Credit Assignment and Decision-Making in Humans , 2017, The Journal of Neuroscience.

[86]  Timothy Muller,et al.  Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems , 2019, Neuron.

[87]  Kevin J. Miller,et al.  Dorsal hippocampus contributes to model-based planning , 2017, Nature Neuroscience.

[88]  Robert C. Wilson,et al.  Orbitofrontal Cortex as a Cognitive Map of Task Space , 2014, Neuron.

[89]  J. Gray,et al.  PsychoPy2: Experiments in behavior made easy , 2019, Behavior Research Methods.

[90]  Martin J. Chadwick,et al.  Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes , 2018, Neuron.

[91]  Rachel A. Diana,et al.  Imaging recollection and familiarity in the medial temporal lobe: a three-component model , 2007, Trends in Cognitive Sciences.

[92]  Michael D. Howard,et al.  Complementary Learning Systems , 2014, Cogn. Sci..

[93]  R. Insausti,et al.  Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis) , 2001, The European journal of neuroscience.

[94]  Seongmin A. Park,et al.  Integration of individual and social information for decision-making in groups of different sizes , 2017, PLoS biology.

[95]  D. Hassabis,et al.  A Goal Direction Signal in the Human Entorhinal/Subicular Region , 2015, Current Biology.

[96]  Peter Gärdenfors,et al.  Navigating cognition: Spatial codes for human thinking , 2018, Science.

[97]  Kimberly L. Stachenfeld,et al.  The hippocampus as a predictive map , 2017, Nature Neuroscience.

[98]  Andrew M. Wikenheiser,et al.  Suppression of Ventral Hippocampal Output Impairs Integrated Orbitofrontal Encoding of Task Structure , 2017, Neuron.

[99]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[100]  Timothy E. J. Behrens,et al.  Counterfactual Choice and Learning in a Neural Network Centered on Human Lateral Frontopolar Cortex , 2011, PLoS biology.

[101]  Ron Meir,et al.  Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis , 2016, eLife.

[102]  Zeb Kurth-Nelson,et al.  Fast Sequences of Non-spatial State Representations in Humans , 2016, Neuron.

[103]  Bradford C. Dickerson,et al.  Amygdala Volume and Social Network Size in Humans , 2010, Nature Neuroscience.

[104]  Nicolas W. Schuck,et al.  Human Orbitofrontal Cortex Represents a Cognitive Map of State Space , 2016, Neuron.