On Resolution Complexity of Matching Principles

[1]  Shuichi Miyazaki,et al.  Tree-Like Resolution Is Superpolynomially Slower Than DAG-Like Resolution for the Pigeonhole Principle , 1999, ISAAC.

[2]  Eli Ben-Sasson Hard examples for bounded depth frege , 2002, STOC '02.

[3]  P. Pudlák Sets and Proofs: On the Complexity of the Propositional Calculus , 1999 .

[4]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[5]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[6]  Pavel Pudlák Proofs as Games , 2000, Am. Math. Mon..

[7]  Meera Sitharam,et al.  Generating hard tautologies using predicate logic and the symmetric group , 1998, Log. J. IGPL.

[8]  Ran Raz,et al.  Regular resolution lower bounds for the weak pigeonhole principle , 2001, STOC '01.

[9]  Søren Riis,et al.  "Planar" tautologies hard for resolution , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[10]  Alexander A. Razborov,et al.  Lower bounds for the polynomial calculus , 1998, computational complexity.

[11]  Samuel R. Buss,et al.  Resolution Proofs of Generalized Pigeonhole Principles , 1988, Theor. Comput. Sci..

[12]  Andreas Goerdt A Threshold for Unsatisfiability , 1996, J. Comput. Syst. Sci..

[13]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[14]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[15]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[16]  Paul Beame,et al.  More on the relative strength of counting principles , 1996, Proof Complexity and Feasible Arithmetics.

[17]  Stefan S. Dantchev Resolution width-size trade-offs for the Pigeon-Hole Principle , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[18]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[19]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[20]  Jan Krajícek,et al.  Exponential Lower Bounds for the Pigeonhole Principle , 1992, STOC.

[21]  Alasdair Urquhart,et al.  Simplified Lower Bounds for Propositional Proofs , 1996, Notre Dame J. Formal Log..

[22]  Samuel R. Buss,et al.  How to Lie Without Being (Easily) Convicted and the Length of Proofs in Propositional Calculus , 1994, CSL.

[23]  Søren Riis A complexity gap for tree resolution , 2001, computational complexity.

[24]  Jan Krajícek,et al.  Lower bounds on Hilbert's Nullstellensatz and propositional proofs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[25]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[26]  Søren Riis Count( $q$) versus the pigeon-hole principle , 1997, Arch. Math. Log..

[27]  Samuel R. Buss,et al.  Resolution and the Weak Pigeonhole Principle , 1997, CSL.

[28]  Alasdair Urquhart Resolution Proofs of Matching Principles , 2004, Annals of Mathematics and Artificial Intelligence.

[29]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[30]  Alexander A. Razborov,et al.  Resolution lower bounds for perfect matching principles , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[31]  Samuel R. Buss,et al.  Linear gaps between degrees for the polynomial calculus modulo distinct primes , 1999, STOC '99.

[32]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[33]  Michael E. Saks,et al.  On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.

[34]  Miklós Ajtai The complexity of the Pigeonhole Principle , 1994, Comb..

[35]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[36]  Søren Riis,et al.  Tree resolution proofs of the weak pigeon-hole principle , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[37]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[38]  Alexander A. Razborov,et al.  Improved Resolution Lower Bounds for the Weak Pigeonhole Principle , 2001, Electron. Colloquium Comput. Complex..

[39]  Alexander A. Razborov,et al.  Electronic Colloquium on Computational Complexity, Report No. 75 (2001) Resolution Lower Bounds for the Weak Functional Pigeonhole Principle , 2001 .

[40]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[41]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[42]  Jan Krajícek,et al.  Bounded arithmetic, propositional logic, and complexity theory , 1995, Encyclopedia of mathematics and its applications.

[43]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.