Appendix A – Proofs

[1]  Maria-Florina Balcan,et al.  Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling , 2016, NIPS.

[2]  Hongbin Zha,et al.  Relaxed Majorization-Minimization for Non-Smooth and Non-Convex Optimization , 2015, AAAI.

[3]  Chao Zhang,et al.  Completing Low-Rank Matrices With Corrupted Samples From Few Coefficients in General Basis , 2015, IEEE Transactions on Information Theory.

[4]  Edward Y. Chang,et al.  Exact Recoverability of Robust PCA via Outlier Pursuit with Tight Recovery Bounds , 2015, AAAI.

[5]  Junbin Gao,et al.  Relations Among Some Low-Rank Subspace Recovery Models , 2014, Neural Computation.

[6]  Shuicheng Yan,et al.  Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization , 2014, IEEE Transactions on Image Processing.

[7]  Zhixun Su,et al.  Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning , 2013, Machine Learning.

[8]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[9]  Julien Mairal,et al.  Optimization with First-Order Surrogate Functions , 2013, ICML.

[10]  Chao Zhang,et al.  A Counterexample for the Validity of Using Nuclear Norm as a Convex Surrogate of Rank , 2013, ECML/PKDD.

[11]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[12]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[13]  Zhixun Su,et al.  Fixed-rank representation for unsupervised visual learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Zhixun Su,et al.  Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation , 2011, NIPS.

[15]  Yaoliang Yu,et al.  Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering , 2011, UAI.

[16]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[17]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[18]  Victor Vianu,et al.  Invited articles section foreword , 2010, JACM.

[19]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[21]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[22]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[23]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[24]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[25]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[26]  B. He,et al.  Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .

[27]  Bingsheng He,et al.  Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities , 1998, Oper. Res. Lett..

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[29]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[30]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[31]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .