Generative Interventions for Causal Learning

We introduce a framework for learning robust visual representations that generalize to new viewpoints, backgrounds, and scene contexts. Discriminative models often learn naturally occurring spurious correlations, which cause them to fail on images outside of the training distribution. In this paper, we show that we can steer generative models to manufacture interventions on features caused by confounding factors. Experiments, visualizations, and theoretical results show this method learns robust representations more consistent with the underlying causal relationships. Our approach improves performance on multiple datasets demanding out-of-distribution generalization, and we demonstrate state-of-the-art performance generalizing from ImageNet to ObjectNet dataset.

[1]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[2]  Claus Aranha,et al.  Data Augmentation Using GANs , 2019, ArXiv.

[3]  Martial Hebert,et al.  Low-Shot Learning from Imaginary Data , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[4]  Stefano Soatto,et al.  Emergence of Invariance and Disentanglement in Deep Representations , 2017, 2018 Information Theory and Applications Workshop (ITA).

[5]  Olga Russakovsky,et al.  Fair Attribute Classification through Latent Space De-biasing , 2020, ArXiv.

[6]  Graham W. Taylor,et al.  Improved Regularization of Convolutional Neural Networks with Cutout , 2017, ArXiv.

[7]  Hayit Greenspan,et al.  Synthetic data augmentation using GAN for improved liver lesion classification , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[8]  Suman V. Ravuri,et al.  Classification Accuracy Score for Conditional Generative Models , 2019, NeurIPS.

[9]  Jimeng Sun,et al.  Causal Regularization , 2019, NeurIPS.

[10]  Walter Karlen,et al.  CXPlain: Causal Explanations for Model Interpretation under Uncertainty , 2019, NeurIPS.

[11]  Jiaying Liu,et al.  Demystifying Neural Style Transfer , 2017, IJCAI.

[12]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[13]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[14]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[15]  Qiang Wang,et al.  Adversarial AutoAugment , 2019, ICLR.

[16]  Phillip Isola,et al.  On the "steerability" of generative adversarial networks , 2019, ICLR.

[17]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[18]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[19]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[20]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Silvio Savarese,et al.  Causal Induction from Visual Observations for Goal Directed Tasks , 2019, ArXiv.

[22]  Pietro Perona,et al.  Visual Causal Feature Learning , 2014, UAI.

[23]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[24]  Bernhard Scholkopf Causality for Machine Learning , 2019 .

[25]  Benjamin Recht,et al.  Do ImageNet Classifiers Generalize to ImageNet? , 2019, ICML.

[26]  Dina Katabi,et al.  Continuously Indexed Domain Adaptation , 2020, ICML.

[27]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[28]  Bolei Zhou,et al.  Seeing What a GAN Cannot Generate , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[29]  Huan Liu,et al.  Deep causal representation learning for unsupervised domain adaptation , 2019, ArXiv.

[30]  Zengchang Qin,et al.  Emotion Classification with Data Augmentation Using Generative Adversarial Networks , 2018, PAKDD.

[31]  Jaakko Lehtinen,et al.  GANSpace: Discovering Interpretable GAN Controls , 2020, NeurIPS.

[32]  Minyoung Huh,et al.  Transforming and Projecting Images into Class-conditional Generative Networks , 2020, ECCV.

[33]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.

[34]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Policies from Data , 2018, ArXiv.

[35]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[36]  Quoc V. Le,et al.  Adversarial Examples Improve Image Recognition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[38]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[39]  Jakub M. Tomczak,et al.  Designing Data Augmentation for Simulating Interventions , 2020, ArXiv.

[40]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[41]  Constantinos Daskalakis,et al.  Learning and Testing Causal Models with Interventions , 2018, NeurIPS.

[42]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Boris Katz,et al.  ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models , 2019, NeurIPS.

[44]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[45]  Yue Wang,et al.  Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? , 2020, ECCV.

[46]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[47]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[48]  Carlos D. Castillo,et al.  Generate to Adapt: Aligning Domains Using Generative Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[49]  Jonas Peters,et al.  Causal inference by using invariant prediction: identification and confidence intervals , 2015, 1501.01332.

[50]  Amos J. Storkey,et al.  Data Augmentation Generative Adversarial Networks , 2017, ICLR 2018.

[51]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[52]  Alexei A. Efros,et al.  Generative Visual Manipulation on the Natural Image Manifold , 2016, ECCV.

[53]  Luis Perez,et al.  The Effectiveness of Data Augmentation in Image Classification using Deep Learning , 2017, ArXiv.