Algorithmic theory of random graphs

The theory of random graphs has been mainly concerned with structural w x properties, in particular the most likely values of various graph invariants}see Bollobas 21 . ` There has been increasing interest in using random graphs as models for the average case analysis of graph algorithms. In this paper we survey some of the results in this area. Q 1997 Ž . John Wiley & Sons, Inc. Random Struct. Alg., 10, 5]42 1997

[1]  E. A. Timofeev On Finding the Expected Length of a Random Minimal Tree , 1989 .

[2]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[3]  Ludek Kucera,et al.  Expected Complexity of Graph Partitioning Problems , 1995, Discret. Appl. Math..

[4]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[5]  David W. Walkup,et al.  On the Expected Value of a Random Assignment Problem , 1979, SIAM J. Comput..

[6]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[7]  Herbert S. Wilf,et al.  Backtrack: An O(1) Expected Time Algorithm for the Graph Coloring Problem , 1984, Inf. Process. Lett..

[8]  J. Michael Steele,et al.  Probabilistic and Worst Case Analyses of Classical Problems of Combinatorial Optimization in Euclidean Space , 1990, Math. Oper. Res..

[9]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[10]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[11]  Philip N. Klein,et al.  A randomized linear-time algorithm for finding minimum spanning trees , 1994, STOC '94.

[12]  Alan M. Frieze,et al.  Hamiltonian cycles in random regular graphs , 1984, J. Comb. Theory, Ser. B.

[13]  C. McDiarmid Clutter percolation and random graphs , 1980 .

[14]  C. McDiarmid Achromatic numbers of random graphs , 1982 .

[15]  Richard M. Karp,et al.  The Transitive Closure of a Random Digraph , 1990, Random Struct. Algorithms.

[16]  Quentin F. Stout,et al.  Optimal parallel construction of Hamiltonian cycles and spanning trees in random graphs , 1993, SPAA '93.

[17]  Robert Davis,et al.  The Expected Length of a Shortest Path , 1993, Inf. Process. Lett..

[18]  Jeanette P. Schmidt Probabilistic analysis of strong hypergraph coloring algorithms and the strong chromatic number , 1987, Discret. Math..

[19]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[20]  Refael Hassin,et al.  Probabilistic Analysis of the Capacitated Transportation Problem , 1988, Math. Oper. Res..

[21]  Donald L. Miller,et al.  Exact Solution of Large Asymmetric Traveling Salesman Problems , 1991, Science.

[22]  Alexander H. G. Rinnooy Kan,et al.  Average Case Analysis of a Heuristic for the Assignment Problem , 1994, Math. Oper. Res..

[23]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[24]  Hans Jürgen Prömel,et al.  Coloring Clique-free Graphs in Linear Expected Time , 1992, Random Struct. Algorithms.

[25]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[26]  Vasek Chvátal,et al.  Determining the Stability Number of a Graph , 1976, SIAM J. Comput..

[27]  Colin McDiarmid,et al.  On finding a minimum spanning tree in a network with random weights , 1997 .

[28]  Alan M. Frieze,et al.  Generating and Counting Hamilton Cycles in Random Regular Graphs , 1996, J. Algorithms.

[29]  Boris Pittel,et al.  Probabilistic Analysis of an Algorithm in the Theory of Markets in Indivisible Goods , 1995 .

[30]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[31]  Rajeev Motwani,et al.  Stable husbands , 1990, SODA '90.

[32]  Nicholas C. Wormald,et al.  Almost All Cubic Graphs Are Hamiltonian , 1992, Random Struct. Algorithms.

[33]  Richard J. Lipton,et al.  A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..

[34]  Philip M. Spira,et al.  A New Algorithm for Finding all Shortest Paths in a Graph of Positive Arcs in Average Time 0(n2 log2n) , 1973, SIAM J. Comput..

[35]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[36]  David W. Walkup,et al.  Matchings in random regular bipartite digraphs , 1980, Discret. Math..

[37]  Alan M. Frieze,et al.  An algorithm for finding Hamilton cycles in random graphs , 1985, STOC '85.

[38]  Alan M. Frieze,et al.  Probabilistic Analysis of a Parallel Algorithm for Finding Maximal Independent Sets , 1990, Random Struct. Algorithms.

[39]  Mark Jerrum An analysis of a Monte Carlo algorithm for estimating the permanent , 1993, IPCO.

[40]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[41]  Alon Itai,et al.  Maximum Flow in Planar Networks , 1979, SIAM J. Comput..

[42]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[43]  Ludek Kucera,et al.  Expected Behavior of Graph Coloring Algorithms , 1977, FCT.

[44]  Prabhakar Raghavan,et al.  Parallel Graph Algorithms That Are Efficient on Average , 1989, Inf. Comput..

[45]  Mark Jerrum,et al.  Simulated annealing for graph bisection , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[46]  G. Grimmett,et al.  Flow in networks with random capacities , 1982 .

[47]  Clifford Stein,et al.  Finding Real-Valued Single-Source Shortest Paths in o(n3) Expected Time , 1998, J. Algorithms.

[48]  Alan M. Frieze,et al.  On the independence and chromatic numbers of random regular graphs , 1992, J. Comb. Theory, Ser. B.

[49]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[50]  Noam Nisan,et al.  Probabilistic Analysis of Network Flow Algorithms , 1993, Math. Oper. Res..

[51]  Alan M. Frieze,et al.  Optimal construction of edge-disjoint paths in random graphs , 1994, SODA '94.

[52]  Kurt Mehlhorn,et al.  On the All-Pairs Shortest Path Algorithm of Moffat and Takaoka , 1995, ESA.

[53]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[54]  Geoffrey Grimmett,et al.  The maximal flow through a directed graph with random capacities , 1982 .

[55]  Michel X. Goemans,et al.  A Lower Bound on the Expected Cost of an Optimal Assignment , 1993, Math. Oper. Res..

[56]  Martin E. Dyer,et al.  On linear programs with random costs , 1986, Math. Program..

[57]  Alan M. Frieze,et al.  Finding hamilton cycles in sparse random graphs , 1987, J. Comb. Theory, Ser. B.

[58]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[59]  Janez Zerovnik A Randomised Heuristical Algorithm for Estimating the Chromatic Number of a Graph , 1989, Inf. Process. Lett..

[60]  B. Pittel On the probable behaviour of some algorithms for finding the stability number of a graph , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[61]  Peter A. Bloniarz A Shortest-Path Algorithm with Expected Time O(n2 log n log* n) , 1983, SIAM J. Comput..

[62]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[63]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[64]  Alan Frieze,et al.  Analysis of parallel algorithms for finding a maximal independent set in a random hypergraph , 1996 .

[65]  Alan M. Frieze,et al.  Analysis of a simple greedy matching algorithm on random cubic graphs , 1995, SODA '93.

[66]  Eugene L. Lawler,et al.  A Guided Tour of Combinatorial Optimization , 1985 .

[67]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[68]  Jan Karel Lenstra,et al.  Probabilistic analysis of combinatorial algorithms: an annotated bibliography , 1984 .

[69]  Robert E. Tarjan,et al.  Linear Expected-Time Algorithms for Connectivity Problems , 1980, J. Algorithms.

[70]  Colin McDiarmid On some conditioning results in the probabilistic analysis of algorithms , 1985, Discret. Appl. Math..

[71]  Eli Upfal,et al.  N-processors graphs distributively achieve perfect matchings in O(log2N) beats , 1982, PODC '82.

[72]  Alan M. Frieze,et al.  Electronic Colloquium on Computational Complexity Polynomial Time Randomised Approximation Schemes for Tutte-grr Othendieck Invariants: the Dense Case , 2022 .

[73]  Alistair Moffat,et al.  An All Pairs Shortest Path Algorithm with Expected Time O(n² log n) , 1987, SIAM J. Comput..

[74]  Claus-Peter Schnorr,et al.  An Algorithm for Transitive Closure with Linear Expected Time , 1978, SIAM J. Comput..

[75]  L. Shapley,et al.  On cores and indivisibility , 1974 .

[76]  R. Karp An Upper Bound on the Expected Cost of an Optimal Assignment , 1987 .

[77]  D. W. MATULA Expose-and-merge exploration and the chromatic number of a random graph , 1987, Comb..

[78]  Joel H. Spencer,et al.  Coloring Random and Semi-Random k-Colorable Graphs , 1995, J. Algorithms.

[79]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[80]  Alan M. Frieze Parallel Algorithms for Finding Hamilton Cycles in Random Graphs , 1987, Inf. Process. Lett..

[81]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[82]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[83]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[84]  Eli Shamir,et al.  How many random edges make a graph hamiltonian? , 1983, Comb..

[85]  Eli Upfal,et al.  Sequential and Distributed Graph Coloring Algorithms with Performance Analysis in Random Graph Spaces , 1984, J. Algorithms.

[86]  David Aldous,et al.  A Random Tree Model Associated with Random Graphs , 1990, Random Struct. Algorithms.

[87]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[88]  Boris G. Pittel,et al.  On-Line Coloring of Sparse Random Graphs and Random Trees , 1997, J. Algorithms.

[89]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.

[90]  Richard M. Karp,et al.  An algorithm to solve the m × n assignment problem in expected time O(mn log n) , 1980, Networks.

[91]  D. J. A. Welsh,et al.  A randomised 3-colouring algorithm , 1989, Discret. Math..

[92]  D. Knuth Estimating the efficiency of backtrack programs. , 1974 .

[93]  Joel H. Spencer,et al.  Sharp concentration of the chromatic number on random graphsGn, p , 1987, Comb..

[94]  Clifford Stein,et al.  Finding Real-Valued Single-Source Shortest Paths , 1996, IPCO.

[95]  Rajeev Motwani,et al.  Average-case analysis of algorithms for matchings and related problems , 1994, JACM.

[96]  B. Pittel On Likely Solutions of a Stable Marriage Problem , 1992 .

[97]  Dorit S. Hochbaum,et al.  A Fast Perfect-Matching Algorithm in Random Graphs , 1990, SIAM J. Discret. Math..

[98]  Jonathan S. Turner,et al.  Almost All k-Colorable Graphs are Easy to Color , 1988, J. Algorithms.

[99]  Ludek Kucera Graphs with Small Chromatic Numbers are Easy to Color , 1989, Inf. Process. Lett..

[100]  Harry Kesten,et al.  First-passage percolation, network flows and electrical resistances , 1984 .

[101]  Nicholas C. Wormald,et al.  Almost All Regular Graphs Are Hamiltonian , 1994, Random Struct. Algorithms.

[102]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[103]  Alan M. Frieze,et al.  On the independence number of random graphs , 1990, Discret. Math..

[104]  Tomasz Luczak,et al.  The chromatic number of random graphs at the double-jump threshold , 1989, Comb..

[105]  László Babai,et al.  Canonical labelling of graphs in linear average time , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[106]  Avrim Blum,et al.  Some tools for approximate 3-coloring , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[107]  Ludek Kucera,et al.  Finding a Maximum Flow in /S, T/-Planar Network in Linear Expected Time , 1984, MFCS.

[108]  G. Grimmett,et al.  Surveys in combinatorics 1985: Random flows: network flows and electrical flows through random media , 1985 .

[109]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[110]  D. Bertsimas,et al.  The Minimum Spanning Tree Constant in Geometrical Probability and Under the Independent Model: A Unified Approach , 1992 .

[111]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[112]  Gottfried Tinhofer A probabilistic analysis of some greedy cardinality matching algorithms , 1984, Ann. Oper. Res..

[113]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[114]  Edward A. Bender,et al.  A Theoretical Analysis of Backtracking in the Graph Coloring Problem , 1985, J. Algorithms.

[115]  W. Fernandez de la Vega Random Graphs Almost Optimally Colorable in Polynomial Time , 1985 .

[116]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[117]  Noga Alon,et al.  Generating Pseudo-Random Permutations and Maximum Flow Algorithms , 1990, Inf. Process. Lett..

[118]  Eli Upfal,et al.  Random hypergraph coloring algorithms and the weak chromatic number , 1985, J. Graph Theory.

[119]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[120]  C. McDiarmid,et al.  On random minimum length spanning trees , 1989 .

[121]  Vasek Chvátal,et al.  Almost All Graphs with 1.44n Edges are 3-Colorable , 1991, Random Struct. Algorithms.

[122]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[123]  Colin McDiarmid,et al.  Determining the Chromatic Number of a Graph , 1979, SIAM J. Comput..

[124]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[125]  H. Yap Total Colourings of Graphs , 1996 .

[126]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[127]  Dorit S. Hochbaum,et al.  Asymptotically Optimal Linear Algorithm for the Minimum k-Cut in a Random Graph , 1990, SIAM J. Discret. Math..

[128]  D. Welsh,et al.  A Spectral Technique for Coloring Random 3-Colorable Graphs , 1994 .

[129]  Ludek Kucera,et al.  The Greedy Coloring Is a Bad Probabilistic Algorithm , 1991, J. Algorithms.

[130]  Alan M. Frieze Maximum matchings in a class of random graphs , 1986, J. Comb. Theory, Ser. B.

[131]  Michael J. Fischer,et al.  A Note on the Average Time to Compute Transitive Closures , 1976, ICALP.

[132]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[133]  Pedro G. Gazmuri Independent sets in random sparse graphs , 1984, Networks.

[134]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[135]  C. R. Subramanian Minimum coloring random and semi-random graphs in polynomial expected time , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[136]  Janez Zerovnik A randomized algorithm for k-colorability , 1994, Discret. Math..

[137]  Boris Pittel On a Random Instance of a "Stable Roommates" Problem: Likely Bahavior of the Proposal Algorithm , 1993, Comb. Probab. Comput..

[138]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[139]  Alan M. Frieze,et al.  On the Independence Number of Random Cubic Graphs , 1994, Random Struct. Algorithms.

[140]  Alan M. Frieze,et al.  Edge-colouring random graphs , 1988, J. Comb. Theory, Ser. B.

[141]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[142]  Dorit S. Hochbaum An Exact Sublinear Algorithm for the Max-Flow, Vertex Disjoint Paths and Communication Problems on Random Graphs , 1992, Oper. Res..

[143]  V. G. Kulkarni,et al.  Shortest paths in networks with exponentially distributed arc lengths , 1986, Networks.

[144]  David Avis,et al.  The Probabilistic Analysis of a Heuristic for the Assignment Problem , 1988, SIAM J. Comput..

[145]  Martin E. Dyer,et al.  On patching algorithms for random asymmetric travelling salesman problems , 1990, Math. Program..