A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization

Several optimization problems encountered in practice have two levels of optimization instead of a single one. These BLOPs (Bi-Level Optimization Problems) are very computationally expensive to solve since the evaluation of each upper level solution requires finding an optimal solution for the lower level. Recently, a new research field, called EBO (Evolutionary Bi-Level Optimization) has appeared thanks to the promising results obtained by the use of EAs (Evolutionary Algorithms) to solve such kind of problems. Most of these promising results are restricted to the continuous case. Motivated by this observation, we propose a new bi-level algorithm, called CODBA (CO-Evolutionary Decomposition based Bi-level Algorithm), to tackle combinatorial BLOPs. The basic idea of our CODBA is to exploit decomposition, parallelism, and co-evolution within the lower level in order to cope with the high computational cost. CODBA is assessed on a set of instances of the bi-level MDVRP (Multi-Depot Vehicle Routing Problem) and is confronted to two recently proposed bi-level algorithms. The statistical analysis of the obtained results shows the merits of CODBA from effectiveness and efficiency viewpoints.

[1]  George B. Dantzig,et al.  The Truck Dispatching Problem , 1959 .

[2]  穂鷹 良介 Non-Linear Programming の計算法について , 1963 .

[3]  Tomas E. Dy Liacco,et al.  The Adaptive Reliability Control System , 1967 .

[4]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[5]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[6]  Wilfred Candler,et al.  A linear two-level programming problem, , 1982, Comput. Oper. Res..

[7]  Jacob Cohen,et al.  Statistical Power Analysis For The Behavioral Sciences Revised Edition , 1987 .

[8]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[9]  Geoffrey C. Fox,et al.  A deterministic annealing approach to clustering , 1990, Pattern Recognit. Lett..

[10]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[11]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[12]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[13]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[14]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[15]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[16]  Samy Bengio,et al.  The Vehicle Routing Problem with Time Windows Part II: Genetic Search , 1996, INFORMS J. Comput..

[17]  Michel Gendreau,et al.  A hybrid Tabu-ascent algorithm for the linear Bilevel Programming Problem , 1996, J. Glob. Optim..

[18]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[19]  G. Laporte,et al.  A tabu search heuristic for periodic and multi-depot vehicle routing problems , 1997, Networks.

[20]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[21]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[22]  Hai Yang,et al.  An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem , 2001 .

[23]  Yafeng Yin,et al.  Multiobjective bilevel optimization for transportation planning and management problems , 2002 .

[24]  Rajkumar Roy,et al.  Bi-level optimisation using genetic algorithm , 2002, Proceedings 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002).

[25]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[26]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[27]  Patrice Marcotte,et al.  A Trust-Region Method for Nonlinear Bilevel Programming: Algorithm and Computational Experience , 2005, Comput. Optim. Appl..

[28]  L. N. Vicente,et al.  Multicriteria Approach to Bilevel Optimization , 2006 .

[29]  Dazhi Sun,et al.  Bi‐level Programming Formulation and Heuristic Solution Approach for Dynamic Traffic Signal Optimization , 2006, Comput. Aided Civ. Infrastructure Eng..

[30]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[31]  Andrew Koh Solving transportation bi-level programs with Differential Evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[32]  Panos M. Pardalos,et al.  A new bilevel formulation for the vehicle routing problem and a solution method using a genetic algorithm , 2007, J. Glob. Optim..

[33]  Herminia I. Calvete,et al.  A Multiobjective Bilevel Program for Production-Distribution Planning in a Supply Chain , 2008, MCDM.

[34]  Lucio Bianco,et al.  A Bilevel flow model for HazMat transportation network design , 2008 .

[35]  Taisir Eldos Simulated Annealing with Deterministic Decisions , 2009 .

[36]  Li Lei,et al.  Research on problems Bilevel Programming for personnel allocation in enterprise , 2010, 2010 International Conference on Management Science & Engineering 17th Annual Conference Proceedings.

[37]  Victor O. K. Li,et al.  Chemical-Reaction-Inspired Metaheuristic for Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[38]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[39]  Jin Xu,et al.  Chemical Reaction Optimization for Task Scheduling in Grid Computing , 2011, IEEE Transactions on Parallel and Distributed Systems.

[40]  Victor O. K. Li,et al.  Evolutionary artificial neural network based on Chemical Reaction Optimization , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[41]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[42]  Herminia I. Calvete,et al.  Bilevel model for production-distribution planning solved by using ant colony optimization , 2011, Comput. Oper. Res..

[43]  Zhao Wei,et al.  Chemical Reaction Optimization for the Fuzzy Rule learning problem , 2012, 2012 IEEE Congress on Evolutionary Computation.

[44]  Victor O. K. Li,et al.  Chemical Reaction Optimization: a tutorial , 2012, Memetic Computing.

[45]  Arnaud Liefooghe,et al.  CoBRA: A cooperative coevolutionary algorithm for bi-level optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[46]  Monireh Abdoos,et al.  Hierarchical control of traffic signals using Q-learning with tile coding , 2013, Applied Intelligence.

[47]  El-Ghazali Talbi,et al.  Metaheuristics for Bi-level Optimization , 2013 .

[48]  M. C. Roboredo,et al.  Solving bilevel combinatorial optimization as bilinear min-max optimization via a branch-and-cut algorithm , 2013 .

[49]  Gerhard J. Woeginger,et al.  A Complexity and Approximability Study of the Bilevel Knapsack Problem , 2013, IPCO.

[50]  Bo An,et al.  A Deployed Quantal Response-Based Patrol Planning System for the U.S. Coast Guard , 2013, Interfaces.

[51]  A. Koh A Metaheuristic Framework for Bi-level Programming Problems with Multi-disciplinary Applications , 2013 .

[52]  Tung Khac Truong,et al.  Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem , 2013, Appl. Soft Comput..

[53]  Herminia I. Calvete,et al.  A Hybrid Algorithm for Solving a Bilevel Production-Distribution Planning Problem , 2013, MS.

[54]  Kalyanmoy Deb,et al.  Efficient Evolutionary Algorithm for Single-Objective Bilevel Optimization , 2013, ArXiv.

[55]  Rafael Martinelli,et al.  A new exact algorithm for the multi-depot vehicle routing problem under capacity and route length constraints , 2014, Discret. Optim..

[56]  Raul Poler,et al.  Non-Linear Programming , 2014 .

[57]  Thomas Bartz-Beielstein,et al.  Efficient global optimization for combinatorial problems , 2014, GECCO.

[58]  Abir Chaabani,et al.  An indicator-based chemical reaction optimization algorithm for multi-objective search , 2014, GECCO.

[59]  Kalyanmoy Deb,et al.  Finding optimal strategies in a multi-period multi-leader-follower Stackelberg game using an evolutionary algorithm , 2013, Comput. Oper. Res..

[60]  Hong Liu,et al.  A cooperative coevolutionary biogeography-based optimizer , 2015, Applied Intelligence.

[61]  Kalyanmoy Deb,et al.  Test Problem Construction for Single-Objective Bilevel Optimization , 2014, Evolutionary Computation.

[62]  Victor O. K. Li,et al.  Adaptive chemical reaction optimization for global numerical optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[63]  Diego Cabrera,et al.  Hierarchical feature selection based on relative dependency for gear fault diagnosis , 2015, Applied Intelligence.

[64]  Karina Valdivia Delgado,et al.  Learning to program using hierarchical model-based debugging , 2015, Applied Intelligence.

[65]  Nataliya I. Kalashnykova,et al.  Bilevel Programming and Applications , 2015 .

[66]  Tapabrata Ray,et al.  A Decomposition-Based Evolutionary Algorithm for Many Objective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[67]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[68]  Abir Chaabani,et al.  An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[69]  Abir Chaabani,et al.  An Improved Co-evolutionary Decomposition-based Algorithm for Bi-level Combinatorial Optimization , 2015, GECCO.

[70]  Xiaowen Chu,et al.  Autonomous-Vehicle Public Transportation System: Scheduling and Admission Control , 2015, IEEE Transactions on Intelligent Transportation Systems.

[71]  C. M. Khaled Saifullah,et al.  Chemical reaction optimization for solving shortest common supersequence problem. , 2016, Computational biology and chemistry.

[72]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[73]  Sweta Srivastava,et al.  Nested hybrid evolutionary model for traffic signal optimization , 2016, Applied Intelligence.

[74]  W. Y. Szeto,et al.  Chemical reaction optimization for solving a static bike repositioning problem , 2016 .

[75]  Makoto Yasuda,et al.  Deterministic Annealing: A Variant of Simulated Annealing and its Application to Fuzzy Clustering , 2017 .

[76]  Abir Chaabani,et al.  A new co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization , 2018, Applied Intelligence.