KillingFusion: Non-rigid 3D Reconstruction without Correspondences

We introduce a geometry-driven approach for real-time 3D reconstruction of deforming surfaces from a single RGB-D stream without any templates or shape priors. To this end, we tackle the problem of non-rigid registration by level set evolution without explicit correspondence search. Given a pair of signed distance fields (SDFs) representing the shapes of interest, we estimate a dense deformation field that aligns them. It is defined as a displacement vector field of the same resolution as the SDFs and is determined iteratively via variational minimization. To ensure it generates plausible shapes, we propose a novel regularizer that imposes local rigidity by requiring the deformation to be a smooth and approximately Killing vector field, i.e. generating nearly isometric motions. Moreover, we enforce that the level set property of unity gradient magnitude is preserved over iterations. As a result, KillingFusion reliably reconstructs objects that are undergoing topological changes and fast inter-frame motion. In addition to incrementally building a model from scratch, our system can also deform complete surfaces. We demonstrate these capabilities on several public datasets and introduce our own sequences that permit both qualitative and quantitative comparison to related approaches.

[1]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Wojciech Matusik,et al.  Articulated mesh animation from multi-view silhouettes , 2008, ACM Trans. Graph..

[3]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[4]  Xianghua Xie,et al.  Radial basis function based level set interpolation and evolution for deformable modelling , 2011, Image Vis. Comput..

[5]  Daniel Cremers,et al.  A primal-dual framework for real-time dense RGB-D scene flow , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Takeo Kanade,et al.  Panoptic Studio: A Massively Multiview System for Social Motion Capture , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[7]  Ramesh Raskar,et al.  Free‐form sketching with variational implicit surfaces , 2002, Comput. Graph. Forum.

[8]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[9]  Takeo Kanade,et al.  Three-dimensional scene flow , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Nikos Paragios,et al.  Non-rigid registration using distance functions , 2003, Comput. Vis. Image Underst..

[11]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[12]  Jovan Popović,et al.  Dynamic shape capture using multi-view photometric stereo , 2009, SIGGRAPH 2009.

[13]  Justin Solomon,et al.  Near‐Isometric Level Set Tracking , 2016, Comput. Graph. Forum.

[14]  Ronald N. Perry,et al.  Designing with distance fields , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[15]  Matthias Nießner,et al.  VolumeDeform: Real-Time Volumetric Non-rigid Reconstruction , 2016, ECCV.

[16]  Slobodan Ilic,et al.  A Bayesian Approach to Multi-view 4D Modeling , 2015, International Journal of Computer Vision.

[17]  Andrew W. Fitzgibbon,et al.  3D scanning deformable objects with a single RGBD sensor , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[19]  Hans-Peter Seidel,et al.  Performance capture from sparse multi-view video , 2008, ACM Trans. Graph..

[20]  Andrew I. Comport,et al.  On unifying key-frame and voxel-based dense visual SLAM at large scales , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Guido Gerig,et al.  Level-set evolution with region competition: automatic 3-D segmentation of brain tumors , 2002, Object recognition supported by user interaction for service robots.

[22]  Vladlen Koltun,et al.  Robust reconstruction of indoor scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[24]  Pushmeet Kohli,et al.  Fusion4D , 2016, ACM Trans. Graph..

[25]  Konrad Schindler,et al.  Piecewise Rigid Scene Flow , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  Olivier D. Faugeras,et al.  How to deal with point correspondences and tangential velocities in the level set framework , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Thomas Brox,et al.  Dense Semi-rigid Scene Flow Estimation from RGBD Images , 2014, ECCV.

[28]  Slobodan Ilic,et al.  Iterative Deformable Surface Tracking in Multi-View Setups , 2010 .

[29]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[30]  Leonidas J. Guibas,et al.  On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.

[31]  Jan-Michael Frahm,et al.  Scanning and tracking dynamic objects with commodity depth cameras , 2013, 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[32]  Leonidas J. Guibas,et al.  Robust single-view geometry and motion reconstruction , 2009, ACM Trans. Graph..

[33]  Daniel Cremers,et al.  Efficient Dense Scene Flow from Sparse or Dense Stereo Data , 2008, ECCV.

[34]  Alejandro F. Frangi,et al.  Active shape model segmentation with optimal features , 2002, IEEE Transactions on Medical Imaging.

[35]  Shang-Hong Lai,et al.  3D non-rigid registration for MPU implicit surfaces , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[36]  Leonidas J. Guibas,et al.  As‐Killing‐As‐Possible Vector Fields for Planar Deformation , 2011, Comput. Graph. Forum.

[37]  Andrew W. Fitzgibbon,et al.  Real-time non-rigid reconstruction using an RGB-D camera , 2014, ACM Trans. Graph..

[38]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[39]  Nassir Navab,et al.  SDF-2-SDF: Highly Accurate 3D Object Reconstruction , 2016, ECCV.

[40]  Horst Bischof,et al.  A Globally Optimal Algorithm for Robust TV-L1 Range Image Integration , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[41]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[42]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[43]  Katsushi Ikeuchi,et al.  Locally rigid globally non-rigid surface registration , 2011, 2011 International Conference on Computer Vision.

[44]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[45]  Olaf Kähler,et al.  Very High Frame Rate Volumetric Integration of Depth Images on Mobile Devices , 2015, IEEE Transactions on Visualization and Computer Graphics.

[46]  Daniel Cremers,et al.  Large-Scale Multi-resolution Surface Reconstruction from RGB-D Sequences , 2013, 2013 IEEE International Conference on Computer Vision.

[47]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[48]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[49]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[50]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[51]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[52]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Kun Zhou,et al.  As-Rigid-AsPossible Distance Field Metamorphosis , 2013, Comput. Graph. Forum.

[54]  Elsa D. Angelini,et al.  State of the Art of Level Set Methods in Segmentation and Registration of Medical Imaging Modalities , 2005 .

[55]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[56]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Edmond Boyer,et al.  An efficient volumetric framework for shape tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Frederic Devernay,et al.  A Variational Method for Scene Flow Estimation from Stereo Sequences , 2007, 2007 IEEE 11th International Conference on Computer Vision.