The complexity of the equivalence problem for counter machines, semilinear sets, and simple programs
暂无分享,去创建一个
[1] Dennis M. Ritchie,et al. The complexity of loop programs , 1967, ACM National Conference.
[2] Derek C. Oppen,et al. A 2^2^2^pn Upper Bound on the Complexity of Presburger Arithmetic , 1978, J. Comput. Syst. Sci..
[3] Eitan M. Gurari,et al. The Complexity of the Equivalence Problem for Simple Programs , 1981, JACM.
[4] John C. Cherniavsky. Simple Programs Realize Exactly Presberger Formulas , 1976, SIAM J. Comput..
[5] Peter Weiner,et al. A Characterization of Semilinear Sets , 1970, J. Comput. Syst. Sci..
[6] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[7] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[8] Allan Borodin,et al. Subrecursive Programming Languages, Part I: efficiency and program structure , 1972, JACM.
[9] I. Borosh,et al. Bounds on positive integral solutions of linear Diophantine equations , 1976 .
[10] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[11] Oscar H. Ibarra,et al. Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.
[12] Eitan M. Gurari,et al. Simple Counter Machines and Number-Theoretic Problems , 1979, J. Comput. Syst. Sci..
[13] Brenda S. Baker,et al. Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..
[14] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[15] Eitan M. Gurari,et al. An NP-Complete Number-Theoretic Problem , 1979, JACM.
[16] Eitan M. Gurari,et al. The Complexity of the Equivalence Problem for two Characterizations of Presburger Sets , 1981, Theor. Comput. Sci..