Design of parameter-scheduled state-feedback controllers using shifting specifications
暂无分享,去创建一个
[1] Philippe Weber,et al. Fault-tolerant control design with respect to actuator health degradation: An LMI approach , 2011, 2011 IEEE International Conference on Control Applications (CCA).
[2] Zhenyu Yang. Incorporating Performance Degradation in Fault Tolerant Control System Design with Multiple Actuator Failures , 2004 .
[3] Pedro Luis Dias Peres,et al. Robust H∞ filter design with pole constraints for discrete-time systems , 2000, J. Frankl. Inst..
[4] M. Fu,et al. Piecewise Lyapunov functions for robust stability of linear time-varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[5] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[6] I.I. Kaminer,et al. Linear parametrically varying systems with brief instabilities: an application to vision/inertial navigation , 2004, IEEE Transactions on Aerospace and Electronic Systems.
[7] ShiPeng,et al. Robust H∞ output feedback control design for fuzzy dynamic systems with quadratic D stability constraints , 2006 .
[8] Young Hoon Joo,et al. Lifted versions of robust D-stability and D-stabilisation conditions for uncertain polytopic linear systems , 2012 .
[9] M. J. Khosrowjerdi,et al. Multiobjective H2/H∞ control design for a VSTOL flight model , 2010, 2010 18th Iranian Conference on Electrical Engineering.
[10] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[11] Valter J. S. Leite,et al. An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, Proceedings of the 2003 American Control Conference, 2003..
[12] Jürgen Ackermann,et al. Sampled-Data Control Systems , 1985 .
[13] Pascal Gahinet,et al. H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[14] Fuwen Yang,et al. Fixed-Order Robust $H_{\infty}$ Controller Design With Regional Pole Assignment , 2007, IEEE Transactions on Automatic Control.
[15] Rainer Palm,et al. Observers for Takagi-Sugeno fuzzy systems , 2002, IEEE Trans. Syst. Man Cybern. Part B.
[16] Michio Sugeno,et al. Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.
[17] R. Takahashi,et al. Improved optimisation approach to the robust H2/H∞ control problem for linear systems , 2005 .
[18] Robert Babuska,et al. Fuzzy Modeling for Control , 1998 .
[19] Carsten W. Scherer,et al. Multi-Objective Output-Feedback Control via LMI Optimization , 1996 .
[20] Alexander Graham,et al. Kronecker Products and Matrix Calculus: With Applications , 1981 .
[21] Xiang Chen,et al. Multiobjective \boldmathHt/Hf Control Design , 2001, SIAM J. Control. Optim..
[22] J. Schur,et al. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .
[23] C. Scherer,et al. Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..
[24] Damiano Rotondo,et al. A shifting pole placement approach for the design of parameter-scheduled state-feedback controllers , 2013, 2013 European Control Conference (ECC).
[25] Pierre Apkarian,et al. Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..
[26] S. Gutman,et al. A general theory for matrix root-clustering in subregions of the complex plane , 1981 .
[27] Tetsuya Iwasaki,et al. All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..
[28] Ricardo Salvador Sánchez Peña,et al. LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..
[29] IwasakiT.,et al. All controllers for the general H control problem , 1994 .
[30] P. Gahinet,et al. A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..
[31] P. Gahinet,et al. A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..
[32] B. Francis,et al. A Course in H Control Theory , 1987 .
[33] Damiano Rotondo,et al. Robust state-feedback control of uncertain LPV systems: An LMI-based approach , 2014, J. Frankl. Inst..
[34] Juan Wang,et al. Adaptive Clustering with Dynamic Cluster Radius for Wireless Sensor Network , 2013 .
[35] P. Khargonekar,et al. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .
[36] Kazuo Tanaka,et al. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .
[37] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[38] Peng Shi,et al. Hinfinity fuzzy state-feedback control design for nonlinear systems with I-stability constraints: An LMI approach , 2008, Math. Comput. Simul..
[39] Olivier Bachelier,et al. Pole placement in a union of regions with prespecified subregion allocation , 2006, Math. Comput. Simul..
[40] P. Gahinet,et al. H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..
[41] Roderick Murray-Smith,et al. Multiple Model Approaches to Modelling and Control , 1997 .
[42] Vincent Pilaud,et al. Polytopality and Cartesian products of graphs , 2010, 1009.1499.
[43] Pedro Luis Dias Peres,et al. An improved LMI condition for robust D-stability of uncertain polytopic systems , 2003, IEEE Trans. Autom. Control..
[44] S. Bittanti,et al. Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .
[45] P. Khargonekar,et al. State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.
[46] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[47] Vladimir A. Yakubovich,et al. Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..
[48] Sing Kiong Nguang,et al. H∞ filtering for fuzzy singularly perturbed systems with pole placement constraints: an LMI approach , 2004, IEEE Trans. Signal Process..
[49] P. Gahinet,et al. A linear matrix inequality approach to H∞ control , 1994 .
[50] K. Glover,et al. State-space formulae for all stabilizing controllers that satisfy an H(infinity)-norm bound and relations to risk sensitivity , 1988 .
[51] T. Başar. Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .
[52] Karolos M. Grigoriadis,et al. Anti-windup controller design using linear parameter-varying control methods , 2000 .
[53] J. Geromel,et al. Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .
[54] Pierre Apkarian,et al. Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..
[55] J. Bernussou,et al. A new robust D-stability condition for real convex polytopic uncertainty , 2000 .
[56] G. W. Irwin,et al. LMI-based control design for discrete polytopic LPV systems , 2003, 2003 European Control Conference (ECC).
[57] Carsten W. Scherer,et al. The Riccati inequality and state-space H∞-optimal control , 1990 .
[58] Jeff S. Shamma,et al. A Linear Parameter Varying Approach to Gain Scheduled Missile Autopilot Design , 1992, 1992 American Control Conference.
[59] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .
[60] Peng Shi,et al. Robust Hinfinity output feedback control design for fuzzy dynamic systems with quadratic D stability constraints: An LMI approach , 2006, Inf. Sci..
[61] ApkarianPierre,et al. Self-scheduled H control of linear parameter-varying systems , 1995 .
[62] Athanasios Sideris,et al. H ∞ control with parametric Lyapunov functions , 1997 .