Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions

This brief introduces a new parametric modelling and identification method for linear time-varying systems using a block least mean square (LMS) approach where the time-varying parameters are approximated using multi-wavelet basis functions. This approach can be applied to track rapidly or even sharply varying processes and is developed by combining wavelet approximation theory with a block LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with severely nonstationary processes. Application of the proposed approach to a real mechanical system indicates better tracking capability of the multi-wavelet basis function algorithm compared with the normalized least squares or recursive least squares routines.

[1]  Rui Zou,et al.  Multiple time-varying dynamic analysis using multiple sets of basis functions , 2005, IEEE Transactions on Biomedical Engineering.

[2]  Stephen A. Billings,et al.  Generalized multiscale radial basis function networks , 2007, Neural Networks.

[3]  J. Nagumo,et al.  A learning method for system identification , 1967, IEEE Transactions on Automatic Control.

[4]  T. S. Liu,et al.  A wavelet network control method for disk drives , 2006, IEEE Transactions on Control Systems Technology.

[5]  Stephen A. Billings,et al.  Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets , 2010, Int. J. Model. Identif. Control..

[6]  S. Mallat A wavelet tour of signal processing , 1998 .

[7]  Stephen A. Billings,et al.  A new class of wavelet networks for nonlinear system identification , 2005, IEEE Transactions on Neural Networks.

[8]  Fahmida N. Chowdhury Input-output modeling of nonlinear systems with time-varying linear models , 2000, IEEE Trans. Autom. Control..

[9]  Nirmal K. Bose,et al.  Properties determining choice of mother wavelet , 2005 .

[10]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[11]  Georgios B. Giannakis,et al.  Time-varying system identification and model validation using wavelets , 1993, IEEE Trans. Signal Process..

[12]  Bin Jiang,et al.  REDUCTION OF FALSE ALARMS IN FAULT DETECTION PROBLEMS , 2006 .

[13]  Sanjit K. Mitra,et al.  Block implementation of adaptive digital filters , 1981 .

[14]  Jorge L. Aravena,et al.  A modular methodology for fast fault detection and classification in power systems , 1998, IEEE Trans. Control. Syst. Technol..

[15]  R. Ghanem,et al.  A WAVELET-BASED APPROACH FOR THE IDENTIFICATION OF LINEAR TIME-VARYING DYNAMICAL SYSTEMS , 2000 .

[16]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Bin Jiang,et al.  Fault estimation and accommodation for linear MIMO discrete-time systems , 2005, IEEE Transactions on Control Systems Technology.

[18]  S. A. Billings,et al.  An efficient nonlinear cardinal B-spline model for high tide forecasts at the Venice Lagoon , 2006 .

[19]  Lennart Ljung,et al.  Adaptation and tracking in system identification - A survey , 1990, Autom..

[20]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[21]  J. Shynk Frequency-domain and multirate adaptive filtering , 1992, IEEE Signal Processing Magazine.

[22]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[23]  Maciej Niedzwiecki,et al.  Identification of time-varying systems with abrupt parameter changes , 1991, Autom..

[24]  S. A. Billings,et al.  Experimental design and identifiability for non-linear systems , 1987 .

[25]  Kazushi Nakano,et al.  Nonlinear Predictive Control Using Neural Nets-Based Local Linearization ARX Model—Stability and Industrial Application , 2007, IEEE Transactions on Control Systems Technology.

[26]  Domenico Prattichizzo,et al.  Application of Kalman Filter to Remove TMS-Induced Artifacts from EEG Recordings , 2008, IEEE Transactions on Control Systems Technology.