A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations

This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot kinematics that provides theoretical preliminaries for the proposed robot motion representation is revisited. Second, a fuzzy qualitative framework based on clustering techniques is presented to connect numerical and symbolic robot representations. Built on the k-\bb AGOP operator (an extension of the ordered weighted aggregation operators), k-means and Gaussian functions are adapted to model a multimodal density of fuzzy qualitative kinematics parameters of a robot in both Cartesian and joint spaces; on the other hand, a mixture regressor and interpolation method are employed to convert Gaussian symbols into numerical values. Finally, simulation results in a PUMA 560 robot demonstrated that the proposed method effectively provides a two-way connection for robot representations used for both numerical and symbolic robotic tasks.

[1]  Caroline M. Eastman,et al.  Review: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[2]  Honghai Liu,et al.  An Extension to Fuzzy Qualitative Trigonometry and Its Application to Robot Kinematics , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[3]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[4]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[5]  Oussama Khatib,et al.  Whole-Body Dynamic Behavior and Control of Human-like Robots , 2004, Int. J. Humanoid Robotics.

[6]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[7]  Hon Keung Kwan,et al.  A fuzzy neural network and its application to pattern recognition , 1994, IEEE Trans. Fuzzy Syst..

[8]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[9]  Alessandro Saffiotti,et al.  An introduction to the anchoring problem , 2003, Robotics Auton. Syst..

[10]  Paul P. Wang,et al.  Intelligent system to support judgmental business forecasting: the case of estimating hotel room demand , 2000, IEEE Trans. Fuzzy Syst..

[11]  Robin R. Murphy,et al.  Introduction to AI Robotics , 2000 .

[12]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[13]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[14]  Jan H. P. Eloff,et al.  Cognitive Fuzzy Modeling for Enhanced Risk Assessment in a Health Care Institution , 2000, IEEE Intell. Syst..

[15]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[16]  Witold Pedrycz,et al.  Evolutionary fuzzy modeling , 2003, IEEE Trans. Fuzzy Syst..

[17]  Boi Faltings,et al.  Qualitative Kinematics: A Framework , 1987, IJCAI.

[18]  Aude Billard,et al.  Special Issue on Robot Learning by Observation, Demonstration, and Imitation , 2007, IEEE Trans. Syst. Man Cybern. Part B.

[19]  John J. Craig,et al.  Introduction to robotics - mechanics and control (2. ed.) , 1989 .

[20]  R. Fullér On fuzzy reasoning schemes , 1999 .

[21]  Odest Chadwicke Jenkins,et al.  Interactive Human Pose and Action Recognition Using Dynamical Motion Primitives , 2007, Int. J. Humanoid Robotics.

[22]  Petri Vuorimaa,et al.  A neuro-fuzzy system for chemical agent detection , 1995, IEEE Trans. Fuzzy Syst..

[23]  Honghai Liu,et al.  Fuzzy Qualitative Robot Kinematics , 2008, IEEE Transactions on Fuzzy Systems.

[24]  Honghai Liu,et al.  Fuzzy Qualitative Trigonometry , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[25]  Maja J. Mataric,et al.  Performance-Derived Behavior Vocabularies: Data-Driven Acquisition of Skills from Motion , 2004, Int. J. Humanoid Robotics.

[26]  Michael Brady,et al.  Artificial Intelligence and Robotics , 1985, Artif. Intell..

[27]  Boi Faltings,et al.  A Symbolic Approach to Qualitative Kinematics , 1992, Artif. Intell..

[28]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[29]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Sung Ho Ha,et al.  Fuzzy Web Ad Selector Based on Web Usage Mining , 2003, IEEE Intell. Syst..

[31]  Yu-Shuang Yang,et al.  Fuzzy adaptive predictive flow control of ATM network traffic , 2003, IEEE Trans. Fuzzy Syst..

[32]  Kenneth D. Forbus,et al.  A qualitative approach to rigid body mechanics , 1988 .

[33]  Honghai Liu,et al.  An Approach to Robot Motion Behaviour Representation , 2007, 2007 IEEE International Fuzzy Systems Conference.

[34]  D. S. Yeung,et al.  Improving learning accuracy of fuzzy decision trees by hybrid neural networks , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[35]  Jiming Liu,et al.  A Method of Spatial Reasoning Based on Qualitative Trigonometry , 1998, Artif. Intell..

[36]  Qiang Shen,et al.  Fuzzy qualitative simulation , 1993, IEEE Trans. Syst. Man Cybern..

[37]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[39]  Honghai Liu,et al.  Qualitative kinematics of planar robots: Intelligent connection , 2007, Int. J. Approx. Reason..