Shadow and Specularity Priors for Intrinsic Light Field Decomposition

In this work, we focus on the problem of intrinsic scene decomposition in light fields. Our main contribution is a novel prior to cope with cast shadows and inter-reflections. In contrast to other approaches which model inter-reflection based only on geometry, we model indirect shading by combining geometric and color information. We compute a shadow confidence measure for the light field and use it in the regularization constraints. Another contribution is an improved specularity estimation by using color information from sub-aperture views. The new priors are embedded in a recent framework to decompose the input light field into albedo, shading, and specularity. We arrive at a variational model where we regularize albedo and the two shading components on epipolar plane images, encouraging them to be consistent across all sub-aperture views. Our method is evaluated on ground truth synthetic datasets and real world light fields. We outperform both state-of-the art approaches for RGB+D images and recent methods proposed for light fields.

[1]  Kai-Fu Yang,et al.  Efficient illuminant estimation for color constancy using grey pixels , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Stephen Lin,et al.  Estimation of Intrinsic Image Sequences from Image+Depth Video , 2012, ECCV.

[3]  Nikolaos Vidakis,et al.  Detection and Classification of Multiple Objects using an RGB-D Sensor and Linear Spatial Pyramid Matching , 2013 .

[4]  Cheng Lu,et al.  Intrinsic Images by Entropy Minimization , 2004, ECCV.

[5]  Anna Alperovich,et al.  Reflection Separation in Light Fields based on Sparse Coding and Specular Flow , 2016, VMV.

[6]  Chi-Keung Tang,et al.  Shadow Removal from Single RGB-D Images , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Noah Snavely,et al.  Intrinsic images in the wild , 2014, ACM Trans. Graph..

[9]  Stephen Lin,et al.  Intrinsic image decomposition with non-local texture cues , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Jitendra Malik,et al.  Intrinsic Scene Properties from a Single RGB-D Image , 2013, CVPR.

[11]  Bastian Goldlücke,et al.  Accurate Depth and Normal Maps from Occlusion-Aware Focal Stack Symmetry , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Alexei A. Efros,et al.  Detecting Ground Shadows in Outdoor Consumer Photographs , 2010, ECCV.

[13]  Bastian Goldlücke,et al.  A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields , 2016, ACCV.

[14]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[16]  Gerald Schaefer,et al.  Solving for Colour Constancy using a Constrained Dichromatic Reflection Model , 2001, International Journal of Computer Vision.

[17]  Seungyong Lee,et al.  Intrinsic Image Decomposition Using Structure-Texture Separation and Surface Normals , 2014, ECCV.

[18]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[19]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[20]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[21]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[22]  Stephen Lin,et al.  Unified Depth Prediction and Intrinsic Image Decomposition from a Single Image via Joint Convolutional Neural Fields , 2016, ECCV.

[23]  Robert C. Bolles,et al.  Epipolar-plane image analysis: An approach to determining structure from motion , 1987, International Journal of Computer Vision.

[24]  K. Ikeuchi,et al.  Color constancy through inverse-intensity chromaticity space. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Bastian Goldlücke,et al.  A Variational Model for Intrinsic Light Field Decomposition , 2016, ACCV.

[26]  Jitendra Malik,et al.  Depth Estimation and Specular Removal for Glossy Surfaces Using Point and Line Consistency with Light-Field Cameras , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Peter V. Gehler,et al.  Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance , 2011, NIPS.

[28]  Carl Olsson,et al.  Curvature-based regularization for surface approximation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Sven Wanner,et al.  The Variational Structure of Disparity and Regularization of 4D Light Fields , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  T. Lee Top-down influence in early visual processing: a Bayesian perspective , 2002, Physiology & Behavior.

[31]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Marc Levoy,et al.  Light Fields and Computational Imaging , 2006, Computer.

[33]  Cheng Lu,et al.  On the removal of shadows from images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Marc Pollefeys,et al.  Variational Regularization and Fusion of Surface Normal Maps , 2014, 2014 2nd International Conference on 3D Vision.

[35]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[36]  Kun Zhou,et al.  Intrinsic Light Field Images , 2016, Comput. Graph. Forum.

[37]  Vladlen Koltun,et al.  A Simple Model for Intrinsic Image Decomposition with Depth Cues , 2013, 2013 IEEE International Conference on Computer Vision.

[38]  英樹 藤堂,et al.  Interactive intrinsic video editing , 2014, ACM Trans. Graph..

[39]  Bo Peng,et al.  Light Field Imaging Based Accurate Image Specular Highlight Removal , 2016, PloS one.

[40]  Adolfo Muñoz,et al.  Intrinsic Images by Clustering , 2012, Comput. Graph. Forum.

[41]  Qionghai Dai,et al.  Intrinsic video and applications , 2014, ACM Trans. Graph..

[42]  Nikos Paragios,et al.  Estimating Shadows with the Bright Channel Cue , 2010, ECCV Workshops.

[43]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.