Variational integrators for electric circuits

In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator.

[1]  Arjan van der Schaft,et al.  Interconnection of port-Hamiltonian systems and composition of Dirac structures , 2007, Autom..

[2]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[3]  W. Marsden I and J , 2012 .

[4]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[5]  A. Iserles,et al.  From high oscillation to rapid approximation II: expansions in Birkhoff series , 2012 .

[6]  J. Marsden,et al.  Variational time integrators , 2004 .

[7]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[8]  F. Legoll,et al.  Integrators for highly oscillatory Hamiltonian systems: an homogenization approach , 2009 .

[9]  Marlis Hochbruck,et al.  Error analysis of exponential integrators for oscillatory second-order differential equations , 2006 .

[10]  Jacquelien M.A. Scherpen,et al.  Relating lagrangian and hamiltonian formalisms of LC circuits , 2003 .

[11]  Jerrold E. Marsden,et al.  Symplectic integration of high-dimensional Hamiltonian systems with slowly varying quadratic stiff potentials , 2010, 1006.4659.

[12]  Giovanni Samaey,et al.  Equation-free multiscale computation: algorithms and applications. , 2009, Annual review of physical chemistry.

[13]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[14]  Eric Vanden-Eijnden,et al.  ON HMM-like integrators and projective integration methods for systems with multiple time scales , 2007 .

[15]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[16]  Daan Huybrechs,et al.  From high oscillation to rapid approximation IV: accelerating convergence , 2011 .

[17]  Leon Y. Bahar,et al.  The generalized Lagrange formulation for nonlinear RLC networks , 1982 .

[18]  Houman Owhadi,et al.  Long-Run Accuracy of Variational Integrators in the Stochastic Context , 2007, SIAM J. Numer. Anal..

[19]  Michael Günther,et al.  Modelling and discretization of circuit problems , 2005 .

[20]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[21]  M. Leok,et al.  Discrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems , 2010 .

[22]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[23]  Jerrold E. Marsden,et al.  An Overview of Variational Integrators , 2004 .

[24]  Arieh Iserles,et al.  From high oscillation to rapid approximation I: Modified Fourier expansions , 2008 .

[25]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[26]  Jerrold E. Marsden,et al.  Variational integrators for degenerate Lagrangians, with application to point vortices , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[27]  F. Legoll,et al.  Symplectic schemes for highly oscillatory Hamiltonian systems: the homogenization approach beyond the constant frequency case , 2010, 1008.1030.

[28]  Near Boltzmann-Gibbs Measure Preserving Stochastic Variational Integrator , 2007 .

[29]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[31]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[32]  A. Iserles,et al.  Explicit adaptive symplectic integrators for solving Hamiltonian systems , 2012 .

[33]  Gaurav S. Sukhatme,et al.  Geometric discretization of nonholonomic systems with symmetries , 2009 .

[34]  Heinz-Otto Kreiss,et al.  Problems with different time scales , 1992, Acta Numerica.

[35]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems , 2006 .

[36]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[37]  R. Scheid The Accurate Numerical Solution of Highly Oscillatory Ordinary Differential Equations , 1983 .

[38]  Jerrold E. Marsden,et al.  Variational Methods, Multisymplectic Geometry and Continuum Mechanics , 2001 .

[39]  Simone Bächle,et al.  Numerical Solution of Differential-Algebraic Systems Arising in Circuit Simulation , 2007 .

[40]  J. Marsden,et al.  Dirac structures in Lagrangian mechanics Part II: Variational structures , 2006 .

[41]  James W. Nilsson,et al.  Electric Circuits , 1983 .

[42]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[43]  J. Marsden,et al.  Discrete mechanics and optimal control for constrained systems , 2010 .

[44]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[45]  J. Marsden,et al.  DISCRETE MECHANICS AND OPTIMAL CONTROL: AN ANALYSIS ∗ , 2008, 0810.1386.

[46]  A. Schaft,et al.  An intrinsic Hamiltonian formulation of the dynamics of LC-circuits , 1995 .

[47]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[48]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[49]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[50]  Arieh Iserles,et al.  From high oscillation to rapid approximation III: multivariate expansions , 2009 .

[51]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[52]  A. Lew Variational time integrators in computational solid mechanics , 2003 .

[53]  Jesús María Sanz-Serna,et al.  Mollified Impulse Methods for Highly Oscillatory Differential Equations , 2008, SIAM J. Numer. Anal..

[54]  Kyle A. Gallivan,et al.  Automatic methods for highly oscillatory ordinary differential equations , 1982 .

[55]  Leon O. Chua,et al.  Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks , 1974 .

[56]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[57]  S. Kim,et al.  A Multiscale Method for Highly Oscillatory Dynamical Systems Using a Poincaré Map Type Technique , 2013, J. Sci. Comput..

[58]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[59]  Jerrold E. Marsden,et al.  Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms , 2007, 0707.4470.

[60]  Jerrold E. Marsden,et al.  Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..

[61]  Steffen Voigtmann,et al.  General Linear Methods for Integrated Circuit Design , 2006 .

[62]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[63]  N. Bou-Rabee,et al.  Hamilton-Pontryagin Integrators on Lie Groups , 2007 .

[64]  A. Schaft,et al.  Implicit Lagrangian equations and the mathematical modeling of physical systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[65]  Daan Huybrechs,et al.  From high oscillation to rapid approximation V: the equilateral triangle , 2011 .

[66]  O. Chau,et al.  A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity , 2007 .

[67]  A. Szatkowski,et al.  Remark on "Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks" , 1979 .

[68]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[69]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[70]  Michael A. Lieberman,et al.  A method for obtaining a canonical Hamiltonian for nonlinear LC circuits , 1989 .

[71]  Zoubin Ghahramani,et al.  Variational Methods , 2014, Computer Vision, A Reference Guide.

[72]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[73]  J. Marsden,et al.  Dirac Structures and Implicit Lagrangian Systems in Electric Networks , 2006 .

[74]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.