Object Instance Detection and Dynamics Modeling in a Long-Term Mobile Robot Context

In the last years, simple service robots such as autonomous vacuum cleaners and lawn mowers have become commercially available and increasingly common. The next generation of service robots should ...

[1]  Z. Pylyshyn Visual indexes, preconceptual objects, and situated vision , 2001, Cognition.

[2]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[3]  Roland Siegwart,et al.  Unsupervised discovery of repetitive objects , 2010, 2010 IEEE International Conference on Robotics and Automation.

[4]  Marc Hanheide,et al.  Persistent localization and life-long mapping in changing environments using the Frequency Map Enhancement , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[5]  William Whittaker,et al.  Conditional particle filters for simultaneous mobile robot localization and people-tracking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[6]  John Folkesson,et al.  Adaptive Cost Function for Pointcloud Registration , 2017, ArXiv.

[7]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[8]  Jari Saarinen,et al.  Normal Distributions Transform Occupancy Map fusion: Simultaneous mapping and tracking in large scale dynamic environments , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Rares Ambrus,et al.  Modeling motion patterns of dynamic objects by IOHMM , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Randall D. Beer,et al.  Spatial learning for navigation in dynamic environments , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[11]  Nils Bore,et al.  Querying 3D Data by Adjacency Graphs , 2015, ICVS.

[12]  Nick Hawes,et al.  Using Qualitative Spatial Relations for indirect object search , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Lucas Beyer,et al.  The STRANDS Project: Long-Term Autonomy in Everyday Environments , 2016, IEEE Robotics Autom. Mag..

[14]  John J. Leonard,et al.  Dynamic pose graph SLAM: Long-term mapping in low dynamic environments , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Mike Stilman,et al.  Planning with movable obstacles in continuous environments with uncertain dynamics , 2013, 2013 IEEE International Conference on Robotics and Automation.

[16]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[17]  Gert Kootstra,et al.  Fast and bottom-up object detection, segmentation, and evaluation using Gestalt principles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  Siddhartha S. Srinivasa,et al.  GATMO: A Generalized Approach to Tracking Movable Objects , 2009, 2009 IEEE International Conference on Robotics and Automation.

[19]  Wolfram Burgard,et al.  Probabilistic state estimation of dynamic objects with a moving mobile robot , 2001, Robotics Auton. Syst..

[20]  Charles C. Kemp,et al.  Challenges for robot manipulation in human environments [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[21]  Joachim Hertzberg,et al.  Towards semantic maps for mobile robots , 2008, Robotics Auton. Syst..

[22]  Wolfram Burgard,et al.  A Probabilistic Framework for Learning Kinematic Models of Articulated Objects , 2011, J. Artif. Intell. Res..

[23]  Wolfram Burgard,et al.  Unsupervised discovery of object classes from range data using latent Dirichlet allocation , 2009, Robotics: Science and Systems.

[24]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[25]  Dizan Vasquez,et al.  A survey on motion prediction and risk assessment for intelligent vehicles , 2014, ROBOMECH Journal.

[26]  John Folkesson,et al.  Search in the real world: Active visual object search based on spatial relations , 2011, 2011 IEEE International Conference on Robotics and Automation.

[27]  Bastian Leibe,et al.  Dense 3D semantic mapping of indoor scenes from RGB-D images , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Markus Vincze,et al.  Temporal integration of feature correspondences for enhanced recognition in cluttered and dynamic environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Wolfram Burgard,et al.  Unsupervised learning of 3D object models from partial views , 2009, 2009 IEEE International Conference on Robotics and Automation.

[30]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[31]  Sebastian Thrun,et al.  Exploration and model building in mobile robot domains , 1993, IEEE International Conference on Neural Networks.

[32]  Wolfram Burgard,et al.  Mobile Robot Mapping and Localization in Non-Static Environments , 2005, AAAI.

[33]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[34]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[35]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Siddhartha S. Srinivasa,et al.  HerbDisc: Towards lifelong robotic object discovery , 2015, Int. J. Robotics Res..

[37]  Christoph H. Lampert,et al.  Unsupervised Object Discovery: A Comparison , 2010, International Journal of Computer Vision.

[38]  Stefan Leutenegger,et al.  SemanticFusion: Dense 3D semantic mapping with convolutional neural networks , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Pietro Perona,et al.  Towards automatic discovery of object categories , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[40]  Nick Hawes,et al.  A Poisson-spectral model for modelling temporal patterns in human data observed by a robot , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[41]  Jari Saarinen,et al.  Conditional transition maps: Learning motion patterns in dynamic environments , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Fei-Fei Li,et al.  Object discovery in 3D scenes via shape analysis , 2013, 2013 IEEE International Conference on Robotics and Automation.

[43]  Mark E. Campbell,et al.  Rao-Blackwellized Particle Filtering for Mapping Dynamic Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[44]  Grzegorz Cielniak,et al.  Toward an object-based semantic memory for long-term operation of mobile service robots , 2010 .

[45]  Charles E. Thorpe,et al.  Simultaneous localization and mapping with detection and tracking of moving objects , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[46]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Danfei Xu,et al.  Folding deformable objects using predictive simulation and trajectory optimization , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[48]  James J. Gibson,et al.  The Ecological Approach to Visual Perception: Classic Edition , 2014 .

[49]  Tom Duckett,et al.  Dynamic Maps for Long-Term Operation of Mobile Service Robots , 2005, Robotics: Science and Systems.

[50]  Gaurav S. Sukhatme,et al.  Towards Mapping Dynamic Environments , 2003 .

[51]  Luis Montesano,et al.  Modeling the Static and the Dynamic Parts of the Environment to Improve Sensor-based Navigation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[52]  Jari Saarinen,et al.  3D normal distributions transform occupancy maps: An efficient representation for mapping in dynamic environments , 2013, Int. J. Robotics Res..

[53]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[54]  Roland Siegwart,et al.  Segmentation and Unsupervised Part-based Discovery of Repetitive Objects , 2010, Robotics: Science and Systems.

[55]  Peter I. Corke,et al.  Vision-only autonomous navigation using topometric maps , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[56]  Vladimír Petrík,et al.  Garment perception and its folding using a dual-arm robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Fabio Tozeto Ramos,et al.  Learning highly dynamic environments with stochastic variational inference , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[58]  Danica Kragic,et al.  Data-Driven Grasp Synthesis—A Survey , 2013, IEEE Transactions on Robotics.

[59]  Gian Diego Tipaldi,et al.  Looking Inside for Mapping the Outside: Introspective Simultaneous Localization and Mapping , 2009 .

[60]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[61]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[62]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[63]  Wolfram Burgard,et al.  Learning Motion Patterns of People for Compliant Robot Motion , 2005, Int. J. Robotics Res..

[64]  Tom Duckett,et al.  FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments , 2017, IEEE Transactions on Robotics.

[65]  Scott Sanner,et al.  Towards object mapping in non-stationary environments with mobile robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[66]  Wolfram Burgard,et al.  Position Estimation for Mobile Robots in Dynamic Environments , 1998, AAAI/IAAI.

[67]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[68]  Tim Weyrich,et al.  Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion , 2013, 2013 International Conference on 3D Vision.

[69]  Elizabeth S. Spelke,et al.  Principles of Object Perception , 1990, Cogn. Sci..

[70]  Sonia Chernova,et al.  Temporal persistence modeling for object search , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[71]  Andrew Y. Ng,et al.  Probabilistic Mobile Manipulation in Dynamic Environments, with Application to Opening Doors , 2007, IJCAI.

[72]  Wolfram Burgard,et al.  Learning the dynamics of doors for robotic manipulation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[73]  John Folkesson,et al.  What can we learn from 38,000 rooms? Reasoning about unexplored space in indoor environments , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[74]  John J. Leonard,et al.  Toward lifelong object segmentation from change detection in dense RGB-D maps , 2013, 2013 European Conference on Mobile Robots.

[75]  Rares Ambrus,et al.  Unsupervised Object Discovery and Segmentation of RGBD-images , 2017, ArXiv.

[76]  D. Roy Grounding words in perception and action: computational insights , 2005, Trends in Cognitive Sciences.

[77]  Elena Cabrio,et al.  Towards Lifelong Object Learning by Integrating Situated Robot Perception and Semantic Web Mining , 2016, ECAI.

[78]  Patrice D. Tremoulet,et al.  Indexing and the object concept: developing `what' and `where' systems , 1998, Trends in Cognitive Sciences.

[79]  Axel Wendt,et al.  Automatic Room Segmentation From Unstructured 3-D Data of Indoor Environments , 2017, IEEE Robotics and Automation Letters.

[80]  Olga Sorkine-Hornung,et al.  Object detection and classification from large‐scale cluttered indoor scans , 2014, Comput. Graph. Forum.

[81]  Henrik I. Christensen,et al.  Learning non-holonomic object models for mobile manipulation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[82]  Michael Milford,et al.  Meaningful maps with object-oriented semantic mapping , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[83]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[84]  Rares Ambrus,et al.  Meta-rooms: Building and maintaining long term spatial models in a dynamic world , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[85]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Bhaskara Marthi,et al.  Unsupervised discovery of object classes with a mobile robot , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[87]  Pablo González de Santos,et al.  The evolution of robotics research , 2007, IEEE Robotics & Automation Magazine.

[88]  Takeo Kanade,et al.  Discovering object instances from scenes of Daily Living , 2011, 2011 International Conference on Computer Vision.

[89]  Rares Ambrus,et al.  Autonomous meshing, texturing and recognition of object models with a mobile robot , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[90]  Manuela M. Veloso,et al.  Model-Instance Object Mapping , 2014, RoboCup.

[91]  Roland Siegwart,et al.  TSDF-based change detection for consistent long-term dense reconstruction and dynamic object discovery , 2017, ICRA 2017.

[92]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[93]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[94]  Manuela M. Veloso,et al.  Episodic non-Markov localization: Reasoning about short-term and long-term features , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[95]  Patric Jensfelt,et al.  Active Visual Object Search in Unknown Environments Using Uncertain Semantics , 2013, IEEE Transactions on Robotics.

[96]  Rares Ambrus,et al.  Unsupervised learning of spatial-temporal models of objects in a long-term autonomy scenario , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[97]  Wolfram Burgard,et al.  Occupancy Grid Models for Robot Mapping in Changing Environments , 2012, AAAI.

[98]  Yiming Ye,et al.  Sensor Planning for 3D Object Search, , 1999, Comput. Vis. Image Underst..

[99]  F. Ade,et al.  Using the condensation algorithm to implement tracking for mobile robots , 1999, 1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355).

[100]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[101]  Ron Alterovitz,et al.  Robot Planning in the Real World: Research Challenges and Opportunities , 2016, AI Mag..

[102]  Dieter Fox,et al.  RGB-D object discovery via multi-scene analysis , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[103]  Walter G. Kropatsch,et al.  Towards Dense SLAM with High Dynamic Range Colors , 2017 .

[104]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[105]  R. Bajcsy Active perception , 1988 .

[106]  Ashbindu Singh,et al.  Review Article Digital change detection techniques using remotely-sensed data , 1989 .

[107]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: a natural integration of topological and metric , 2003, Robotics Auton. Syst..