Shape-Based Retrieval of Articulated 3D Models Using Spectral Embedding

We present an approach for robust shape retrieval from data-bases containing articulated 3D shapes. We represent each shape by the eigenvectors of an appropriately defined affinity matrix, obtaining a spectral embedding. Retrieval is then performed on these embeddings using global shape descriptors. Transformation into the spectral domain normalizes the shapes against articulation (bending), rigid-body transformations, and uniform scaling. Experimentally, we show absolute improvement in retrieval performance when conventional shape descriptors are used in the spectral domain on the McGill database of articulated 3D shapes. We also propose a simple eigenvalue-based descriptor, which is easily computed and performs comparably against the best known shape descriptors applied to the original shapes.

[1]  Edwin R. Hancock,et al.  Spectral correspondence for point pattern matching , 2003, Pattern Recognit..

[2]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[3]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[4]  Katsushi Ikeuchi,et al.  Determining 3-D object pose using the complex extended Gaussian image , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[6]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[7]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark (Figures 1 and 2) , 2004, Shape Modeling International Conference.

[8]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[9]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[11]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Dejan V. VraniC An improvement of rotation invariant 3D-shape based on functions on concentric spheres , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[13]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[14]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[15]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[16]  Ali Shokoufandeh,et al.  Retrieving Articulated 3-D Models Using Medial Surfaces and Their Graph Spectra , 2005, EMMCVPR.

[17]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  大阪大学工学部,et al.  Kang, S. B. and Ikeuchi K. : Determining 3-D Object Pose Using the Complex Extended Gaussian Image, Proc. of CVPR '91, pp.580-585. , 1992 .

[19]  T. Funkhouser,et al.  Shape matching and anisotropy , 2004, SIGGRAPH 2004.

[20]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Ryutarou Ohbuchi,et al.  Shape-similarity search of 3D models by using enhanced shape functions , 2003, Proceedings of Theory and Practice of Computer Graphics, 2003..

[22]  Martial Hebert,et al.  On 3D shape similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Li Yang,et al.  K-edge connected neighborhood graph for geodesic distance estimation and nonlinear data projection , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[24]  Hao Zhang,et al.  Mesh Segmentation via Recursive and Visually Salient Spectral Cuts , 2005 .

[25]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).