Positive-Feedback Level Shifter Logic for Large-Area Electronics

Positive-feedback Level Shifter (PLS) logic is proposed in this paper for the design of unipolar digital circuits manufactured at low temperature on foil using organic or metal-oxide semiconductors. Positive feedback and a suitable control voltage provide high gain and a symmetrical input-output characteristic even in presence of large TFT variations, enabling robust digital design. The measured gain improves from 13 dB in traditional Zero-Vgs inverters to 76 dB in PLS inverters; the average noise margin increases from 2.58 V (Zero-Vgs) to 6.82 V (PLS) at 20 V supply. Assuming that a positive noise margin for each gate is the only requirement to obtain a fully functional digital circuit, the maximum number of logic gates compatible with a 90% yield improves from 200 Zero-Vgs inverters to above 24 million PLS inverters. A 240-stage PLS shift-register exploiting 13,440 organic TFTs is indeed successfully measured. This is to the authors' knowledge the organic circuit with the highest transistor count ever demonstrated. The control voltage, always within the supply rails, enables automatic correction of the process variations using linear control circuits. The proposed approach will enable a strong increase in the complexity of large-area electronics on foil, with great benefit to applications like flexible displays and large-area sensing surfaces.

[1]  T. Someya,et al.  Low-voltage, high-mobility organic thin-film transistors with improved stability , 2010, 68th Device Research Conference.

[2]  Arthur H. M. van Roermund,et al.  A 6b 10MS/s current-steering DAC manufactured with amorphous Gallium-Indium-Zinc-Oxide TFTs achieving SFDR > 30dB up to 300kHz , 2012, 2012 IEEE International Solid-State Circuits Conference.

[3]  H. Sirringhaus Reliability of Organic Field‐Effect Transistors , 2009 .

[4]  S. Yamazaki,et al.  4.0-inch Active-Matrix Organic Light-Emitting Diode Display Integrated with Driver Circuits Using Amorphous In–Ga–Zn-Oxide Thin-Film Transistors with Suppressed Variation , 2010 .

[5]  Theory of the field-effect mobility in amorphous organic transistors , 2008 .

[6]  Giuseppe Palmisano,et al.  A 4b ADC manufactured in a fully-printed organic complementary technology including resistors , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[7]  T. Sakurai,et al.  Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin , 2005, IEEE Journal of Solid-State Circuits.

[8]  P. Heremans,et al.  Influence of transistor parameters on the noise margin of organic digital circuits , 2006, IEEE Transactions on Electron Devices.

[9]  A. V. Ferris-Prabhu,et al.  Modeling the critical area in yield forecasts , 1985 .

[10]  H. Klauk,et al.  A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass , 2009, ESSDERC 2009.

[11]  Wei Xiong,et al.  A 3V 6b successive-approximation ADC using complementary organic thin-film transistors on glass , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[12]  Massimo Alioto,et al.  Exploiting Hysteresys in MCML Circuits , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  T. Someya,et al.  A large-area, flexible, and lightweight sheet image scanner integrated with organic field-effect transistors and organic photodiodes , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[14]  Kyung Cheol Choi,et al.  Improvement of Reliability of a Flexible Photoluminescent Display Using Organic-Based Materials , 2010, IEEE Transactions on Electron Devices.

[15]  Arthur H. M. van Roermund,et al.  An organic VCO-based ADC for quasi-static signals achieving 1LSB INL at 6b resolution , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[16]  A. Salleo,et al.  Flexible Electronics: Materials and Applications , 2009 .

[17]  T. Someya,et al.  Large-Area Flexible Ultrasonic Imaging System With an Organic Transistor Active Matrix , 2010, IEEE Transactions on Electron Devices.

[18]  Huaxiang Yin,et al.  Program/Erase Characteristics of Amorphous Gallium Indium Zinc Oxide Nonvolatile Memory , 2008, IEEE Transactions on Electron Devices.

[19]  G. Gelinck,et al.  Dual-gate organic thin-film transistors , 2005 .

[20]  P. Heremans,et al.  Noise-Margin Analysis for Organic Thin-Film Complementary Technology , 2010, IEEE Transactions on Electron Devices.

[21]  Takao Someya,et al.  Sheet-type organic active matrix amplifier system using Vth-tunable, pseudo-CMOS circuits with floating-gate structure , 2011, 2011 International Electron Devices Meeting.

[22]  P. Heremans,et al.  Low-voltage gallium–indium–zinc–oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application , 2011 .

[23]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[24]  J. Hauser Noise margin criteria for digital logic circuits , 1993 .

[25]  E. van Veenendaal,et al.  A flexible 240/spl times/320-pixel display with integrated row drivers manufactured in organic electronics , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[26]  T. Jackson,et al.  Self-Aligned-Gate ZnO TFT Circuits , 2010, IEEE Electron Device Letters.

[27]  Erik van Veenendaal,et al.  A 13.56-MHz RFID System Based on Organic Transponders , 2006, IEEE Journal of Solid-State Circuits.

[28]  Arthur H. M. van Roermund,et al.  A tunable transconductor for analog amplification and filtering based on double-gate organic TFTs , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[29]  Robert Blache,et al.  Organic CMOS circuits for RFID applications , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[30]  Wim Dehaene,et al.  Bidirectional Communication in an HF Hybrid Organic/Solution-Processed Metal-Oxide RFID Tag , 2014, IEEE Transactions on Electron Devices.

[31]  Wim Dehaene,et al.  An 8-Bit, 40-Instructions-Per-Second Organic Microprocessor on Plastic Foil , 2012, IEEE Journal of Solid-State Circuits.

[32]  Eugenio Cantatore,et al.  Increasing the noise margin in organic circuits using dual gate field-effect transistors , 2008 .

[33]  Kwang-Ting Cheng,et al.  Design for Low Power and Reliable Flexible Electronics: Self-Tunable Cell-Library Design , 2009, Journal of Display Technology.

[34]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[35]  Wim Dehaene,et al.  Unipolar Organic Transistor Circuits Made Robust by Dual-Gate Technology , 2011, IEEE Journal of Solid-State Circuits.