On the List Decodability of Insertions and Deletions

In this work, we study the problem of list decoding of insertions and deletions. We present a Johnson-type upper bound on the maximum list size. The bound is meaningful only when insertions occur. Our bound implies that there are binary codes of rate <inline-formula> <tex-math notation="LaTeX">$\Omega (1)$ </tex-math></inline-formula> that are list-decodable from a 0.707-fraction of insertions. For any <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {I}} \geq 0$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {D}} \in [0,1)$ </tex-math></inline-formula>, there exist <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ary codes of rate <inline-formula> <tex-math notation="LaTeX">$\Omega (1)$ </tex-math></inline-formula> that are list-decodable from a <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {I}}$ </tex-math></inline-formula>-fraction of insertions and <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {D}}$ </tex-math></inline-formula>-fraction of deletions, where <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> depends only on <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {I}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {D}}$ </tex-math></inline-formula>. We also provide efficient encoding and decoding algorithms for list-decoding from <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {I}}$ </tex-math></inline-formula>-fraction of insertions and <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {D}}$ </tex-math></inline-formula>-fraction of deletions for any <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {I}} \geq 0$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\tau _{\mathsf {D}} \in [0,1)$ </tex-math></inline-formula>. Based on the Johnson-type bound, we derive a Plotkin-type upper bound on the code size in the Levenshtein metric.

[1]  Yuan Zhou Introduction to Coding Theory , 2010 .

[2]  Bernhard Haeupler,et al.  Synchronization strings: explicit constructions, local decoding, and applications , 2017, STOC.

[3]  Venkatesan Guruswami,et al.  An Improved Bound on the Fraction of Correctable Deletions , 2015, IEEE Transactions on Information Theory.

[4]  Bernhard Haeupler,et al.  Synchronization strings: codes for insertions and deletions approaching the Singleton bound , 2017, STOC.

[5]  Madhu Sudan,et al.  Synchronization Strings: List Decoding for Insertions and Deletions , 2018, ICALP.

[6]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[7]  Xin Li,et al.  Synchronization Strings: Highly Efficient Deterministic Constructions over Small Alphabets , 2019, SODA.

[8]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[9]  Jehoshua Bruck,et al.  Duplication-correcting codes for data storage in the DNA of living organisms , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[10]  Hendrik C. Ferreira,et al.  On multiple insertion/Deletion correcting codes , 2002, IEEE Trans. Inf. Theory.

[11]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[12]  Khaled A. S. Abdel-Ghaffar,et al.  On Helberg's Generalization of the Levenshtein Code for Multiple Deletion/Insertion Error Correction , 2012, IEEE Transactions on Information Theory.

[13]  David Zuckerman,et al.  Asymptotically good codes correcting insertions, deletions, and transpositions , 1997, SODA '97.

[14]  Khaled A. S. Abdel-Ghaffar,et al.  A Multiple Insertion/Deletion Correcting Code for Run-Length Limited Sequences , 2012, IEEE Transactions on Information Theory.

[15]  Antonia Wachter-Zeh,et al.  List Decoding of Insertions and Deletions , 2017, IEEE Transactions on Information Theory.

[16]  Venkatesan Guruswami,et al.  Deletion Codes in the High-Noise and High-Rate Regimes , 2014, IEEE Transactions on Information Theory.

[17]  Ankur A. Kulkarni,et al.  Nonasymptotic Upper Bounds for Deletion Correcting Codes , 2012, IEEE Transactions on Information Theory.

[18]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[19]  Morris Plotkin,et al.  Binary codes with specified minimum distance , 1960, IRE Trans. Inf. Theory.

[20]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[21]  V. I. Levenshtein,et al.  Bounds for deletion/insertion correcting codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[22]  Daniel Cullina,et al.  An improvement to Levenshtein's upper bound on the cardinality of deletion correcting codes , 2013, ISIT.

[23]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[24]  Venkatesan Guruswami,et al.  Efficiently decodable insertion/deletion codes for high-noise and high-rate regimes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[25]  Jie Ma,et al.  Longest Common Subsequences in Sets of Words , 2014, SIAM J. Discret. Math..