Resonant soliton and complexiton solutions for (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation

Abstract In this letter, the linear superposition principle is used to discuss the ( 3 + 1 ) -dimensional Boiti–Leon–Manna–Pempinelli equation with bilinear derivatives. As a result, we obtain new resonant soliton and complexiton solutions by discussing two different cases involved the parameters. These solutions are a class of N -wave solutions of linear combinations of exponential traveling waves.

[1]  Yaning Tang,et al.  New periodic-wave solutions for (2+1)- and (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations , 2015 .

[2]  Abdul-Majid Wazwaz,et al.  The Hirota's bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[3]  Wen-Xiu Ma,et al.  A Study on Rational Solutions to a KP-like Equation , 2015 .

[4]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[5]  Three kinds of coupling integrable couplings of the Korteweg–de Vries hierarchy of evolution equations , 2010 .

[6]  L. Kavitha,et al.  Stair and Step Soliton Solutions of the Integrable (2+1) and (3+1)-Dimensional Boiti—Leon—Manna—Pempinelli Equations , 2012 .

[7]  Wen-Xiu Ma,et al.  Resonant multiple wave solutions for a (3+1)-dimensional nonlinear evolution equation by linear superposition principle , 2017, Comput. Math. Appl..

[8]  Yufeng Zhang,et al.  New periodic wave solutions of (3+1)-dimensional soliton equation , 2017 .

[9]  Wenxiu Ma,et al.  Bilinear equations, Bell polynomials and linear superposition principle , 2013 .

[10]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[11]  Rehab M. El-Shiekh,et al.  Periodic and solitary wave solutions for a generalized variable-coefficient Boiti-Leon-Pempinlli system , 2017, Comput. Math. Appl..

[12]  Jian‐Guo Liu,et al.  New three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation , 2017 .

[13]  Wen-Xiu Ma,et al.  Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations , 2016, Comput. Math. Appl..

[14]  Wenxiu Ma,et al.  Complexiton solutions to integrable equations , 2005, nlin/0502035.

[15]  Holger Kantz,et al.  Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation , 2013, Appl. Math. Comput..

[16]  Wen-Xiu Ma,et al.  Applications of linear superposition principle to resonant solitons and complexitons , 2017, Comput. Math. Appl..

[17]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[18]  Abdul-Majid Wazwaz,et al.  Solitary waves solutions for extended forms of quantum Zakharov–Kuznetsov equations , 2012 .

[19]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[20]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[21]  Wen-Xiu Ma,et al.  Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm , 2012, Appl. Math. Comput..

[22]  Yi-Tian Gao,et al.  Soliton-like, periodic wave and rational solutions for a (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation in the incompressible fluid , 2017 .

[23]  Yong Chen,et al.  Deformation rogue wave to the (2+1)-dimensional KdV equation , 2017 .

[24]  Yi-Tian Gao,et al.  On a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli Equation , 2015 .

[25]  Mingliang Wang,et al.  Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics , 1996 .

[26]  Wen-Xiu Ma,et al.  EXACT ONE-PERIODIC AND TWO-PERIODIC WAVE SOLUTIONS TO HIROTA BILINEAR EQUATIONS IN (2+1) DIMENSIONS , 2008, 0812.4316.

[27]  Xiang Gu,et al.  Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions , 2013, Appl. Math. Comput..

[28]  R. El-Shiekh Direct Similarity Reduction and New Exact Solutions for the Variable-Coefficient Kadomtsev–Petviashvili Equation , 2015 .

[29]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[30]  Yi Zhang,et al.  Rational solutions to a KdV-like equation , 2015, Appl. Math. Comput..

[31]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[32]  Wei Xu,et al.  Wronskian determinant solutions of the (3 + 1)-dimensional Jimbo-Miwa equation , 2011, Appl. Math. Comput..

[33]  Xiaoen Zhang,et al.  Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[34]  Zhenya Yan,et al.  New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water , 2001 .