A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot

In machine learning, generative modeling aims to learn to generate new data statistically similar to the training data distribution. In this paper, we survey learning generative models under limited data, few shots and zero shot, referred to as Generative Modeling under Data Constraint (GM-DC). This is an important topic when data acquisition is challenging, e.g. healthcare applications. We discuss background, challenges, and propose two taxonomies: one on GM-DC tasks and another on GM-DC approaches. Importantly, we study interactions between different GM-DC tasks and approaches. Furthermore, we highlight research gaps, research trends, and potential avenues for future exploration. Project website: https://gmdc-survey.github.io.

[1]  Guoqiang Zhou,et al.  AutoInfo GAN: Toward a better image synthesis GAN framework for high-fidelity few-shot datasets via NAS and contrastive learning , 2023, Knowledge-Based Systems.

[2]  Yilong Lv,et al.  Rethinking cross-domain semantic relation for few-shot image generation , 2023, Applied Intelligence.

[3]  Clayton M. Rabideau,et al.  HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution , 2023, ArXiv.

[4]  Jae-Pil Heo,et al.  Progressive Few-Shot Adaptation of Generative Model with Align-Free Spatial Correlation , 2023, AAAI.

[5]  Phillip Isola,et al.  DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data , 2023, NeurIPS.

[6]  Bernard Ghanem,et al.  Dynamically Masked Discriminator for Generative Adversarial Networks , 2023, ArXiv.

[7]  T. Goldstein,et al.  Tree-Ring Watermarks: Fingerprints for Diffusion Images that are Invisible and Robust , 2023, ArXiv.

[8]  Jing Yu Koh,et al.  Generating Images with Multimodal Language Models , 2023, ArXiv.

[9]  Junnan Li,et al.  BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing , 2023, NeurIPS.

[10]  P. Turaga,et al.  Target-Aware Generative Augmentations for Single-Shot Adaptation , 2023, ICML.

[11]  Jin Zhu,et al.  Few-shot 3D Shape Generation , 2023, ArXiv.

[12]  Liqing Zhang,et al.  WeditGAN: Few-shot Image Generation via Latent Space Relocation , 2023, ArXiv.

[13]  Xubin Wu,et al.  AMMGAN: adaptive multi-scale modulation generative adversarial network for few-shot image generation , 2023, Applied Intelligence.

[14]  Yifan Jiang,et al.  Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models , 2023, ArXiv.

[15]  Min Lin,et al.  Exploring Incompatible Knowledge Transfer in Few-shot Image Generation , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Humphrey Shi,et al.  Zero-Shot Generative Model Adaptation via Image-Specific Prompt Learning , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Jakob Verbeek,et al.  Few-shot Semantic Image Synthesis with Class Affinity Transfer , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Ngai-Man Cheung,et al.  Re-Thinking Model Inversion Attacks Against Deep Neural Networks , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Eric P. Xing,et al.  KD-DLGAN: Data Limited Image Generation via Knowledge Distillation , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Yuning Jiang,et al.  CF-Font: Content Fusion for Few-Shot Font Generation , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Min Lin,et al.  A Recipe for Watermarking Diffusion Models , 2023, ArXiv.

[22]  Wenli Du,et al.  ProtoGAN: Towards high diversity and fidelity image synthesis under limited data , 2023, Inf. Sci..

[23]  Rajiv Kumar,et al.  DEff-GAN: Diverse Attribute Transfer for Few-Shot Image Synthesis , 2023, VISIGRAPP.

[24]  M. Mikawa,et al.  Faster Few-Shot Face Image Generation With Features of Specific Group Using Pivotal Tuning Inversion and PCA , 2023, 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC).

[25]  Y. Lipman,et al.  MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation , 2023, ICML.

[26]  Pratul P. Srinivasan,et al.  VQ3D: Learning a 3D-Aware Generative Model on ImageNet , 2023, 2023 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Yiming Wu,et al.  D3T-GAN: Data-Dependent Domain Transfer GANs for Image Generation with Limited Data , 2023, ACM Trans. Multim. Comput. Commun. Appl..

[28]  S. Savarese,et al.  BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models , 2023, ICML.

[29]  Zhe Wang,et al.  DFSGAN: Introducing editable and representative attributes for few-shot image generation , 2023, Eng. Appl. Artif. Intell..

[30]  Dimitris N. Metaxas,et al.  SINE: SINgle Image Editing with Text-to-Image Diffusion Models , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Nupur Kumari,et al.  Multi-Concept Customization of Text-to-Image Diffusion , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Tamar Rott Shaham,et al.  BlendGAN: Learning and Blending the Internal Distributions of Single Images by Spatial Image-Identity Conditioning , 2022, ArXiv.

[33]  Christopher T.H Teo,et al.  Fair Generative Models via Transfer Learning , 2022, AAAI.

[34]  Haoqi Fan,et al.  Scaling Language-Image Pre-Training via Masking , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  T. Michaeli,et al.  SinDDM: A Single Image Denoising Diffusion Model , 2022, ICML.

[36]  A. Schwing,et al.  DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data , 2022, NeurIPS.

[37]  Sunghyun Cho,et al.  DynaGAN: Dynamic Few-shot Adaptation of GANs to Multiple Domains , 2022, SIGGRAPH Asia.

[38]  Dong Chen,et al.  SinDiffusion: Learning a Diffusion Model from a Single Natural Image , 2022, ArXiv.

[39]  Yi Zhang,et al.  The Euclidean Space is Evil: Hyperbolic Attribute Editing for Few-shot Image Generation , 2022, ArXiv.

[40]  M. Irani,et al.  SinFusion: Training Diffusion Models on a Single Image or Video , 2022, ICML.

[41]  Jin Zhu,et al.  Few-shot Image Generation with Diffusion Models , 2022, ArXiv.

[42]  Karl D. D. Willis,et al.  CLIP-Sculptor: Zero-Shot Generation of High-Fidelity and Diverse Shapes from Natural Language , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Ngai-Man Cheung,et al.  Few-shot Image Generation via Adaptation-Aware Kernel Modulation , 2022, NeurIPS.

[44]  Jin Zhu,et al.  Few-shot Image Generation via Masked Discrimination , 2022, ArXiv.

[45]  D. Vetrov,et al.  HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks , 2022, NeurIPS.

[46]  Ziqiu Chi,et al.  FreGAN: Exploiting Frequency Components for Training GANs under Limited Data , 2022, NeurIPS.

[47]  B. Liu,et al.  Dynamic Weighted Semantic Correspondence for Few-Shot Image Generative Adaptation , 2022, ACM Multimedia.

[48]  Luisa F. Polanía,et al.  Visual Prompt Tuning for Generative Transfer Learning , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Bolei Zhou,et al.  Improving GANs with A Dynamic Discriminator , 2022, NeurIPS.

[50]  Tiande Guo,et al.  Generalized One-shot Domain Adaptation of Generative Adversarial Networks , 2022, NeurIPS.

[51]  Yuanzhen Li,et al.  DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Ngai-Man Cheung,et al.  Discovering Transferable Forensic Features for CNN-generated Images Detection , 2022, ECCV.

[53]  Amit H. Bermano,et al.  An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion , 2022, ICLR.

[54]  Liqing Zhang,et al.  Few-shot Image Generation Using Discrete Content Representation , 2022, ACM Multimedia.

[55]  Liting Zhou,et al.  Few-shot image generation based on contrastive meta-learning generative adversarial network , 2022, The Visual Computer.

[56]  W. Zuo,et al.  Towards Diverse and Faithful One-shot Adaption of Generative Adversarial Networks , 2022, NeurIPS.

[57]  Heliang Zheng,et al.  FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity in Data-Efficient GANs , 2022, ECCV.

[58]  Ziqiu Chi,et al.  WaveGAN: Frequency-aware GAN for High-Fidelity Few-shot Image Generation , 2022, ECCV.

[59]  Ngai-Man Cheung,et al.  Revisiting Label Smoothing and Knowledge Distillation Compatibility: What was Missing? , 2022, ICML.

[60]  Mingming Gong,et al.  Understanding Robust Overfitting of Adversarial Training and Beyond , 2022, ICML.

[61]  Mingyuan Zhou,et al.  Diffusion-GAN: Training GANs with Diffusion , 2022, ICLR.

[62]  Junyan Zhu,et al.  On Aliased Resizing and Surprising Subtleties in GAN Evaluation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Tero Karras,et al.  Elucidating the Design Space of Diffusion-Based Generative Models , 2022, NeurIPS.

[64]  O. Winther,et al.  Few-Shot Diffusion Models , 2022, ArXiv.

[65]  David J. Fleet,et al.  Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding , 2022, NeurIPS.

[66]  Henghui Ding,et al.  A Closer Look at Few-shot Image Generation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Bin Li,et al.  A Comprehensive Survey on Data-Efficient GANs in Image Generation , 2022, ArXiv.

[68]  E. Shechtman,et al.  Any-resolution Training for High-resolution Image Synthesis , 2022, ECCV.

[69]  Prafulla Dhariwal,et al.  Hierarchical Text-Conditional Image Generation with CLIP Latents , 2022, ArXiv.

[70]  Jong-Chul Ye,et al.  One-Shot Adaptation of GAN in Just One CLIP , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Ying Tai,et al.  CtlGAN: Few-shot Artistic Portraits Generation with Contrastive Transfer Learning , 2022, ArXiv.

[72]  Xin Jin,et al.  Attribute Group Editing for Reliable Few-shot Image Generation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Tero Karras,et al.  The Role of ImageNet Classes in Fréchet Inception Distance , 2022, ICLR.

[74]  Zhengjun Zha,et al.  Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  A. Voynov,et al.  When, Why, and Which Pretrained GANs Are Useful? , 2022, ICLR.

[76]  W. Freeman,et al.  MaskGIT: Masked Generative Image Transformer , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  L. Gool,et al.  Collapse by Conditioning: Training Class-conditional GANs with Limited Data , 2022, ICLR.

[78]  João Paulo Papa,et al.  Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks , 2022, ACM Comput. Surv..

[79]  Trevor Darrell,et al.  A ConvNet for the 2020s , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Min Jin Chong,et al.  JoJoGAN: One Shot Face Stylization , 2021, ECCV.

[81]  B. Ommer,et al.  High-Resolution Image Synthesis with Latent Diffusion Models , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  E. Shechtman,et al.  Ensembling Off-the-shelf Models for GAN Training , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Steven Euijong Whang,et al.  Data collection and quality challenges in deep learning: a data-centric AI perspective , 2021, The VLDB Journal.

[84]  Xiaoyang Guo,et al.  Adaptive Feature Interpolation for Low-Shot Image Generation , 2021, ECCV.

[85]  N. Kwak,et al.  Few-Shot Image Generation with Mixup-Based Distance Learning , 2021, ECCV.

[86]  Bolei Zhou,et al.  One-Shot Generative Domain Adaptation , 2021, ArXiv.

[87]  Bo Dai,et al.  Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data , 2021, NeurIPS.

[88]  Andreas Geiger,et al.  On the Frequency Bias of Generative Models , 2021, NeurIPS.

[89]  Jenia Jitsev,et al.  LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs , 2021, ArXiv.

[90]  Andreas Geiger,et al.  Projected GANs Converge Faster , 2021, NeurIPS.

[91]  Ngai-Man Cheung,et al.  Revisit Multimodal Meta-Learning through the Lens of Multi-Task Learning , 2021, NeurIPS.

[92]  O. Winther,et al.  SCHA-VAE: Hierarchical Context Aggregation for Few-Shot Generation , 2021, ICML.

[93]  Peter Wonka,et al.  Mind the Gap: Domain Gap Control for Single Shot Domain Adaptation for Generative Adversarial Networks , 2021, ICLR.

[94]  Shijian Lu,et al.  GenCo: Generative Co-training for Generative Adversarial Networks with Limited Data , 2021, AAAI.

[95]  Yang Gao,et al.  LoFGAN: Fusing Local Representations for Few-shot Image Generation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[96]  Apurva Shah,et al.  Topic Modeling Using Latent Dirichlet allocation , 2021, ACM Comput. Surv..

[97]  Michal Drozdzal,et al.  Instance-Conditioned GAN , 2021, NeurIPS.

[98]  Michael S. Bernstein,et al.  On the Opportunities and Risks of Foundation Models , 2021, ArXiv.

[99]  Daniel Cohen-Or,et al.  StyleGAN-NADA , 2021, ACM Trans. Graph..

[100]  Diederik P. Kingma,et al.  Variational Diffusion Models , 2021, ArXiv.

[101]  Xueqi Cheng,et al.  Self-supervised GANs with Label Augmentation , 2021, NeurIPS.

[102]  Stefano Ermon,et al.  D2C: Diffusion-Decoding Models for Few-Shot Conditional Generation , 2021, NeurIPS.

[103]  Bolei Zhou,et al.  Data-Efficient Instance Generation from Instance Discrimination , 2021, NeurIPS.

[104]  Juergen Gall,et al.  One-Shot GAN: Learning to Generate Samples from Single Images and Videos , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[105]  Prafulla Dhariwal,et al.  Diffusion Models Beat GANs on Image Synthesis , 2021, NeurIPS.

[106]  Aniwat Phaphuangwittayakul,et al.  Fast Adaptive Meta-Learning for Few-Shot Image Generation , 2021, IEEE Transactions on Multimedia.

[107]  Fahad Shahbaz Khan,et al.  MineGAN++: Mining Generative Models for Efficient Knowledge Transfer to Limited Data Domains , 2021, Int. J. Comput. Vis..

[108]  Yong Jae Lee,et al.  Few-shot Image Generation via Cross-domain Correspondence , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Hung-Yu Tseng,et al.  Regularizing Generative Adversarial Networks under Limited Data , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[110]  Ngai-Man Cheung,et al.  A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Lawrence Carin,et al.  CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks , 2021, NeurIPS.

[112]  Zhangyang Wang,et al.  Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective , 2021, NeurIPS.

[113]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[114]  Alec Radford,et al.  Zero-Shot Text-to-Image Generation , 2021, ICML.

[115]  Prafulla Dhariwal,et al.  Improved Denoising Diffusion Probabilistic Models , 2021, ICML.

[116]  Luc Van Gool,et al.  Efficient Conditional GAN Transfer with Knowledge Propagation across Classes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Yizhe Zhu,et al.  Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis , 2021, ICLR.

[118]  B. Ommer,et al.  Taming Transformers for High-Resolution Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[119]  Eli Shechtman,et al.  Few-shot Image Generation with Elastic Weight Consolidation , 2020, NeurIPS.

[120]  Jiaming Song,et al.  Denoising Diffusion Implicit Models , 2020, ICLR.

[121]  Mahyar Khayatkhoei,et al.  Spatial Frequency Bias in Convolutional Generative Adversarial Networks , 2020, AAAI.

[122]  Abhishek Kumar,et al.  Few-Shot Adaptation of Generative Adversarial Networks , 2020, ArXiv.

[123]  Liqing Zhang,et al.  DeltaGAN: Towards Diverse Few-shot Image Generation with Sample-Specific Delta , 2020, ECCV.

[124]  Yan Hong,et al.  F2GAN: Fusing-and-Filling GAN for Few-shot Image Generation , 2020, ACM Multimedia.

[125]  Jan Kautz,et al.  NVAE: A Deep Hierarchical Variational Autoencoder , 2020, NeurIPS.

[126]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[127]  Jonathan T. Barron,et al.  Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains , 2020, NeurIPS.

[128]  Song Han,et al.  Differentiable Augmentation for Data-Efficient GAN Training , 2020, NeurIPS.

[129]  Sijia Wang,et al.  GAN Memory with No Forgetting , 2020, NeurIPS.

[130]  Abdul Jabbar,et al.  A Survey on Generative Adversarial Networks: Variants, Applications, and Training , 2020, ACM Comput. Surv..

[131]  Ngai-Man Cheung,et al.  On Data Augmentation for GAN Training , 2020, IEEE Transactions on Image Processing.

[132]  Sameer Singh,et al.  Image Augmentations for GAN Training , 2020, ArXiv.

[133]  Tero Karras,et al.  Training Generative Adversarial Networks with Limited Data , 2020, NeurIPS.

[134]  Jiannong Cao,et al.  Generative Adversarial Networks (GANs) , 2020, ACM Comput. Surv..

[135]  Yisroel Mirsky,et al.  The Creation and Detection of Deepfakes , 2020, ACM Comput. Surv..

[136]  Matthew Fisher,et al.  Improved Techniques for Training Single-Image GANs , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[137]  Yan Hong,et al.  Matchinggan: Matching-Based Few-Shot Image Generation , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[138]  Margret Keuper,et al.  Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to Reproduce Spectral Distributions , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  L. Carin,et al.  On Leveraging Pretrained GANs for Generation with Limited Data , 2020, ICML.

[140]  Jinwoo Shin,et al.  Freeze the Discriminator: a Simple Baseline for Fine-Tuning GANs , 2020, 2002.10964.

[141]  Honglak Lee,et al.  Improved Consistency Regularization for GANs , 2020, AAAI.

[142]  Zixuan Liu,et al.  DAWSON: A Domain Adaptive Few Shot Generation Framework , 2020, ArXiv.

[143]  Joost van de Weijer,et al.  MineGAN: Effective Knowledge Transfer From GANs to Target Domains With Few Images , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  Jung-Woo Ha,et al.  StarGAN v2: Diverse Image Synthesis for Multiple Domains , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[145]  Tero Karras,et al.  Analyzing and Improving the Image Quality of StyleGAN , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Ross B. Girshick,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[147]  Honglak Lee,et al.  Consistency Regularization for Generative Adversarial Networks , 2019, ICLR.

[148]  Jiashi Feng,et al.  PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[149]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[150]  Tali Dekel,et al.  SinGAN: Learning a Generative Model From a Single Natural Image , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[151]  Tatsuya Harada,et al.  Image Generation From Small Datasets via Batch Statistics Adaptation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[152]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[153]  D. Demetrick,et al.  BreCaHAD: a dataset for breast cancer histopathological annotation and diagnosis , 2019, BMC Research Notes.

[154]  Pieter Abbeel,et al.  Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design , 2019, ICML.

[155]  Louis Clouâtre,et al.  FIGR: Few-shot Image Generation with Reptile , 2019, ArXiv.

[156]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[157]  Jun-Hai Zhai,et al.  Autoencoder and Its Various Variants , 2018, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[158]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[159]  Jitendra Malik,et al.  Implicit Maximum Likelihood Estimation , 2018, ArXiv.

[160]  Yoshua Bengio,et al.  On the Spectral Bias of Neural Networks , 2018, ICML.

[161]  Bolei Zhou,et al.  Places: A 10 Million Image Database for Scene Recognition , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[162]  Bogdan Raducanu,et al.  Transferring GANs: generating images from limited data , 2018, ECCV.

[163]  Dmitry P. Vetrov,et al.  Few-shot Generative Modelling with Generative Matching Networks , 2018, AISTATS.

[164]  Michael Carbin,et al.  The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks , 2018, ICLR.

[165]  Joshua Achiam,et al.  On First-Order Meta-Learning Algorithms , 2018, ArXiv.

[166]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[167]  Arthur Gretton,et al.  Demystifying MMD GANs , 2018, ICLR.

[168]  Tao Xiang,et al.  Learning to Compare: Relation Network for Few-Shot Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[169]  Amos J. Storkey,et al.  Data Augmentation Generative Adversarial Networks , 2017, ICLR 2018.

[170]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[171]  Gang Sun,et al.  Squeeze-and-Excitation Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[172]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[173]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[174]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[175]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[176]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[177]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[178]  Weinan Zhang,et al.  SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient , 2016, AAAI.

[179]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[180]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[181]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[182]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[183]  Yinda Zhang,et al.  LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop , 2015, ArXiv.

[184]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[185]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[186]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[187]  Aaron C. Courville,et al.  Generative Adversarial Nets , 2014, NIPS.

[188]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[189]  Amit R.Sharma,et al.  Face Photo-Sketch Synthesis and Recognition , 2012 .

[190]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[191]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[192]  Andrew Zisserman,et al.  Automated Flower Classification over a Large Number of Classes , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.

[193]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[194]  Svetha Venkatesh,et al.  Topic transition detection using hierarchical hidden Markov and semi-Markov models , 2005, MULTIMEDIA '05.

[195]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[196]  Xuemiao Xu,et al.  Where is My Spot? Few-shot Image Generation via Latent Subspace Optimization , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[197]  Liang Hou Regularizing Label-Augmented Generative Adversarial Networks Under Limited Data , 2023, IEEE Access.

[198]  Arnab Kumar Mondal,et al.  Few-shot Cross-domain Image Generation via Inference-time Latent-code Learning , 2023, ICLR.

[199]  T. Lee,et al.  Prototype memory and attention mechanisms for few shot image generation , 2022, ICLR.

[200]  Eric P. Xing,et al.  Masked Generative Adversarial Networks are Data-Efficient Generation Learners , 2022, NeurIPS.

[201]  Byoung-Tak Zhang,et al.  C 3 : Contrastive Learning for Cross-domain Correspondence in Few-shot Image Generation , 2021 .

[202]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[203]  Jordan Yaniv,et al.  The Face of Art: Landmark Detection and Geometric Style in Portraits , 2019 .

[204]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[205]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[206]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[207]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[208]  Piotr Porwik,et al.  The Haar – Wavelet Transform in Digital Image Processing : Its Status and Achievements , 2004 .

[209]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..