PolSAR Image Classification via Learned Superpixels and QCNN Integrating Color Features

Polarimetric synthetic aperture radar (PolSAR) image classification plays an important role in various PolSAR image application. And many pixel-wise, region-based classification methods have been proposed for PolSAR images. However, most of the pixel-wise methods can not model local spatial relationship of pixels due to negative effects of speckle noise, and most of the region-based methods fail to figure out the regions with the similar polarimetric features. Considering that color features can provide good visual expression and perform well for image interpretation, in this work, based on the PolSAR pseudo-color image over Pauli decomposition, we propose a supervised PolSAR image classification approach combining learned superpixels and quaternion convolutional neural network (QCNN). First, the PolSAR RGB pseudo-color image is formed under Pauli decomposition. Second, we train QCNN with quaternion PolSAR data converted by RGB channels to extract deep color features and obtain pixel-wise classification map. QCNN treats color channels as a quaternion matrix excavating the relationship among the color channels effectively and avoiding information loss. Third, pixel affinity network (PAN) is utilized to generate the learned superpixels of PolSAR pseudo-color image. The learned superpixels allow the local information exploitation available in the presence of speckle noise. Finally, we fuse the pixel-wise classification result and superpixels to acquire the ultimate pixel-wise PolSAR image classification map. Experiments on three real PolSAR data sets show that the proposed approach can obtain 96.56%, 95.59%, and 92.55% accuracy for Flevoland, San Francisco and Oberpfaffenhofen data set, respectively. And compared with state-of-the-art PolSAR image classification methods, the proposed algorithm can obtained competitive classification results.

[1]  Malcolm Davidson,et al.  Crop Classification Using Short-Revisit Multitemporal SAR Data , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[2]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Md Jan Nordin,et al.  Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features , 2016, PloS one.

[4]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Kun-Shan Chen,et al.  A fuzzy neural network to SAR image classification , 1998, IEEE Trans. Geosci. Remote. Sens..

[6]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Ronghua Shang,et al.  Complex-Valued Convolutional Autoencoder and Spatial Pixel-Squares Refinement for Polarimetric SAR Image Classification , 2019, Remote. Sens..

[8]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Jian Cheng,et al.  Segmentation-Based PolSAR Image Classification Using Visual Features: RHLBP and Color Features , 2015, Remote. Sens..

[10]  Ridha Touzi,et al.  Mean-shift and hierarchical clustering for textured polarimetric SAR image segmentation/classification , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Torbjørn Eltoft,et al.  Classification With a Non-Gaussian Model for PolSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[13]  Ning Li,et al.  Improved superpixel-based polarimetric synthetic aperture radar image classification integrating color features , 2016 .

[14]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[15]  Haijiang Wang,et al.  PolSAR image classification based on Laplacian Eigenmaps and superpixels , 2017, EURASIP J. Wirel. Commun. Netw..

[16]  Jong-Sen Lee,et al.  Speckle reduction in multipolarization, multifrequency SAR imagery , 1991, IEEE Trans. Geosci. Remote. Sens..

[17]  Dan Zhang,et al.  Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information , 2016, IEEE Geoscience and Remote Sensing Letters.

[18]  Dirk H. Hoekman,et al.  A new polarimetric classification approach evaluated for agricultural crops , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  Jan Kautz,et al.  Learning Superpixels with Segmentation-Aware Affinity Loss , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Yu Zhou,et al.  Polarimetric SAR Image Classification Using Deep Convolutional Neural Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[21]  Wen Hong,et al.  An Unsupervised Segmentation With an Adaptive Number of Clusters Using the $SPAN/H/\alpha/A$ Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Shuang Wang,et al.  Fuzzy Superpixels for Polarimetric SAR Images Classification , 2018, IEEE Transactions on Fuzzy Systems.

[23]  Jong-Sen Lee,et al.  The use of fully polarimetric information for the fuzzy neural classification of SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Hong Gu,et al.  Polarimetrie SAR image classification based on deep belief network and superpixel segmentation , 2017, 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP).

[25]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[26]  Yue Zhang,et al.  Unsupervised classification of polsar imagery based on consensus similarity network fusion , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[27]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[28]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[30]  Biao Hou,et al.  Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  Simon Yueh,et al.  Application of neural networks to radar image classification , 1994, IEEE Trans. Geosci. Remote. Sens..

[32]  Yiming Pi,et al.  Polarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels , 2014, Remote. Sens..

[33]  Anthony P. Doulgeris,et al.  An Automatic ${\cal U}$-Distribution and Markov Random Field Segmentation Algorithm for PolSAR Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Xiangyang Luo,et al.  Quaternion Convolutional Neural Network for Color Image Classification and Forensics , 2019, IEEE Access.

[36]  Xiayuan Huang,et al.  Supervised Polarimetric SAR Image Classification Using Tensor Local Discriminant Embedding , 2018, IEEE Transactions on Image Processing.

[37]  S. Fukuda,et al.  Support vector machine classification of land cover: application to polarimetric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[38]  Ronny Hänsch,et al.  Complex-Valued Multi-Layer Perceptrons -An Application to Polarimetric SAR Data , 2010 .

[39]  谢鸿全 An Unsupervised Segmentation With an Adaptive Number of Clusters Using the SPAN/H/a/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis , 2007 .

[40]  Fabio Del Frate,et al.  Crop classification using multiconfiguration C-band SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  Akira Hirose,et al.  Quaternion Neural-Network-Based PolSAR Land Classification in Poincare-Sphere-Parameter Space , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Yi Xu,et al.  Quaternion Convolutional Neural Networks , 2018, ECCV.

[43]  Akira Hirose,et al.  Isotropization of Quaternion-Neural-Network-Based PolSAR Adaptive Land Classification in Poincare-Sphere Parameter Space , 2018, IEEE Geoscience and Remote Sensing Letters.

[44]  Chao Wang,et al.  A Classification Method for Polsar Images using SLIC Superpixel Segmentation and Deep Convolution Neural Network , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[45]  Erfu Yang,et al.  Dual-Branch Deep Convolution Neural Network for Polarimetric SAR Image Classification , 2017 .

[46]  Jin Zhao,et al.  Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder for PolSAR Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Yi Su,et al.  Region-Based Classification of Polarimetric SAR Images Using Wishart MRF , 2008, IEEE Geoscience and Remote Sensing Letters.

[48]  Shuang Wang,et al.  PolSAR Image Classification Based on DBN and Tensor Dimensionality Reduction , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[49]  Xuelong Li,et al.  Lazy Random Walks for Superpixel Segmentation , 2014, IEEE Transactions on Image Processing.

[50]  Serkan Kiranyaz,et al.  Integrating Color Features in Polarimetric SAR Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Akira Hirose,et al.  Unsupervised Fine Land Classification Using Quaternion Autoencoder-Based Polarization Feature Extraction and Self-Organizing Mapping , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Bernard De Baets,et al.  Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop Classifications Based on the Random Forests Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Md. Jan Nordin,et al.  Contour-Based Corner Detection and Classification by Using Mean Projection Transform , 2014, Sensors.

[55]  Kun-Shan Chen,et al.  Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network , 1996, IEEE Trans. Geosci. Remote. Sens..

[56]  Jie Geng,et al.  Semisupervised Classification of Polarimetric SAR Image via Superpixel Restrained Deep Neural Network , 2018, IEEE Geoscience and Remote Sensing Letters.

[57]  Haipeng Wang,et al.  Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.