Probing Computation in the Primate Visual System at Single-Cone Resolution.

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world. Expected final online publication date for the Annual Review of Neuroscience Volume 42 is July 8, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

[1]  F. Amthor,et al.  Nonlinearity of the inhibition underlying retinal directional selectivity , 1991, Visual Neuroscience.

[2]  H S Smallman,et al.  Fine grain of the neural representation of human spatial vision , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Michael C Crair,et al.  Activity-dependent development of visual receptive fields , 2017, Current Opinion in Neurobiology.

[4]  Wallace B. Thoreson,et al.  Lateral interactions in the outer retina , 2012, Progress in Retinal and Eye Research.

[5]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[6]  B. Singer,et al.  Improvement in retinal image quality with dynamic correction of the eye's aberrations. , 2001, Optics express.

[7]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[8]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[9]  R Srebro,et al.  Spectral Sensitivity of Color Mechanisms: Derivation from Fluctuations of Color Appearance near Threshold , 1965, Science.

[10]  S. McKee,et al.  Spatial configurations for visual hyperacuity , 1977, Vision Research.

[11]  David Williams,et al.  Different sensations from cones with the same photopigment. , 2005, Journal of vision.

[12]  D. Dacey,et al.  Origins of perception : retinal ganglion cell diversity and the creation of parallel visual pathways , 2011 .

[13]  Austin Roorda,et al.  Transverse chromatic aberration across the visual field of the human eye , 2016, Journal of vision.

[14]  N J Coletta,et al.  Psychophysical estimate of extrafoveal cone spacing. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[15]  G. Field,et al.  Behavioural and physiological limits to vision in mammals , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[17]  Mark C. W. van Rossum,et al.  Noise removal at the rod synapse of mammalian retina , 1998, Visual Neuroscience.

[18]  D. Baylor,et al.  Receptive-field microstructure of blue-yellow ganglion cells in primate retina , 1999, Nature Neuroscience.

[19]  D. E. Koenig,et al.  Fixation light hue bias revisited: Implications for using adaptive optics to study color vision , 2012, Vision Research.

[20]  Fred Rieke,et al.  Synaptic Rectification Controls Nonlinear Spatial Integration of Natural Visual Inputs , 2016, Neuron.

[21]  D. Dacey,et al.  Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina , 2013, Visual Neuroscience.

[22]  D. Tolhurst,et al.  Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[23]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[24]  William S Tuten,et al.  Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors. , 2015, Investigative ophthalmology & visual science.

[25]  Kristian Donner,et al.  Noise and the absolute thresholds of cone and rod vision , 1992, Vision Research.

[26]  F. Rieke,et al.  Retinal processing near absolute threshold: from behavior to mechanism. , 2005, Annual review of physiology.

[27]  J. Verweij,et al.  Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  A. Roorda,et al.  Characterizing the Human Cone Photoreceptor Mosaic via Dynamic Photopigment Densitometry , 2015, PloS one.

[29]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[30]  K. Donner,et al.  Low retinal noise in animals with low body temperature allows high visual sensitivity , 1988, Nature.

[31]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[32]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[33]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[34]  Austin Roorda,et al.  Mapping the Perceptual Grain of the Human Retina , 2014, The Journal of Neuroscience.

[35]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[36]  Barry B. Lee,et al.  Macaque retinal ganglion cell responses to visual patterns: harmonic composition, noise, and psychophysical detectability. , 2016, Journal of neurophysiology.

[37]  Lawrence C. Sincich,et al.  Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye , 2012, Biomedical optics express.

[38]  J. L. Schnapf,et al.  The Photovoltage of Macaque Cone Photoreceptors: Adaptation, Noise, and Kinetics , 1999, The Journal of Neuroscience.

[39]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[40]  Christopher L Passaglia,et al.  Orientation sensitivity of ganglion cells in primate retina , 2002, Vision Research.

[41]  David Williams,et al.  Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye , 2014, The Journal of Neuroscience.

[42]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  Austin Roorda,et al.  Functional Imaging of Cone Photoreceptors , 2016 .

[44]  Austin Roorda,et al.  Retinally stabilized cone-targeted stimulus delivery. , 2007, Optics express.

[45]  Darren E. Koenig,et al.  The absolute threshold of cone vision. , 2011, Journal of vision.

[46]  Austin Roorda,et al.  Adaptive Optics Scanning Laser Ophthalmoscope-Based Microperimetry , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[47]  David Williams Aliasing in human foveal vision , 1985, Vision Research.

[48]  Jaeson Jang,et al.  Interlayer Repulsion of Retinal Ganglion Cell Mosaics Regulates Spatial Organization of Functional Maps in the Visual Cortex , 2017, The Journal of Neuroscience.

[49]  Eero P. Simoncelli,et al.  Mapping nonlinear receptive field structure in primate retina at single cone resolution , 2015, eLife.

[50]  A. Bradley,et al.  Statistical variation of aberration structure and image quality in a normal population of healthy eyes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  David R. Williams,et al.  Recent Advances in Retinal Imaging With Adaptive Optics , 2005 .

[52]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[53]  Claudio M. Privitera,et al.  Mapping the spatial extent of perceptive fields for flicker adaptation using retinally stabilized stimuli , 2017 .

[54]  Barry B. Lee,et al.  Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[55]  P. Lennie,et al.  Fine Structure of Parvocellular Receptive Fields in the Primate Fovea Revealed by Laser Interferometry , 2000, The Journal of Neuroscience.

[56]  B. Sakitt Counting every quantum , 1972, The Journal of physiology.

[57]  Darren E. Koenig,et al.  Adaptive optics without altering visual perception , 2014, Vision Research.

[58]  Austin Roorda,et al.  Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect? , 2018, Journal of vision.

[59]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[60]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[61]  M Kamermans,et al.  Cones perform a non‐linear transformation on natural stimuli , 2010, The Journal of physiology.

[62]  C. Privitera,et al.  Eye-tracking technology for real-time monitoring of transverse chromatic aberration. , 2016, Optics letters.

[63]  S. Baccus Timing and computation in inner retinal circuitry. , 2007, Annual review of physiology.

[64]  Eugénie Dalimier,et al.  Role of ocular aberrations in photopic spatial summation in the fovea. , 2010, Optics letters.

[65]  Stefano Panzeri,et al.  Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization , 2017, Nature Communications.

[66]  W S Geisler,et al.  Physical limits of acuity and hyperacuity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[67]  B. Boycott,et al.  Horizontal Cells in the Monkey Retina: Cone connections and dendritic network , 1989, The European journal of neuroscience.

[68]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[69]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[70]  Surya Ganguli,et al.  Inferring hidden structure in multilayered neural circuits , 2017, bioRxiv.

[71]  A. Riccò,et al.  Relazione fra il minimo angolo visuale e l'intensità luminosa. , 1877 .

[72]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[73]  Michael J. Berry,et al.  Fine Spatial Information Represented in a Population of Retinal Ganglion Cells , 2011, The Journal of Neuroscience.

[74]  William S Tuten,et al.  The elementary representation of spatial and color vision in the human retina , 2016, Science Advances.

[75]  Wilson S. Geisler,et al.  The relative contributions of pre-neural and neural factors to areal summation in the fovea , 1991, Vision Research.

[76]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[77]  Heidi Hofer,et al.  Organization of the Human Trichromatic Cone Mosaic , 2003, The Journal of Neuroscience.

[78]  H. Barlow Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.

[79]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[80]  David Williams Topography of the foveal cone mosaic in the living human eye , 1988, Vision Research.

[81]  Gerald Westheimer,et al.  Optical superresolution and visual hyperacuity , 2012, Progress in Retinal and Eye Research.

[82]  William S Tuten,et al.  Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina , 2017, The Journal of Neuroscience.

[83]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[84]  F. Rieke,et al.  Coincidence Detection of Single-Photon Responses in the Inner Retina at the Sensitivity Limit of Vision , 2014, Current Biology.

[85]  Jonathon Shlens,et al.  Uniform Signal Redundancy of Parasol and Midget Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[86]  Fred Rieke,et al.  Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina , 2016, Neuron.

[87]  David H. Brainard,et al.  The Cost of Trichromacy for Spatial Vision , 1991 .

[88]  Lawrence C. Sincich,et al.  Resolving Single Cone Inputs to Visual Receptive Fields , 2009, Nature Neuroscience.

[89]  R. Prevedel,et al.  Direct detection of a single photon by humans , 2016, Nature Communications.

[90]  C. M. Davenport,et al.  Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[91]  Jonathon Shlens,et al.  Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly , 2009, PLoS biology.

[92]  Heidi Hofer,et al.  Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. , 2008, Journal of vision.

[93]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[94]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[95]  David Williams Imaging single cells in the living retina , 2011, Vision Research.

[96]  Jonathan B Demb,et al.  Cellular Mechanisms for Direction Selectivity in the Retina , 2007, Neuron.

[97]  Junzhong Liang,et al.  Aberrations and retinal image quality of the normal human eye. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[98]  T. Sharpee,et al.  Predictable irregularities in retinal receptive fields , 2009, Proceedings of the National Academy of Sciences.

[99]  Jessica I. Wolfing,et al.  Retinal microscotomas revealed with adaptive-optics microflashes. , 2006, Investigative ophthalmology & visual science.

[100]  W. R. Taylor,et al.  Transmission of single photon signals through a binary synapse in the mammalian retina , 2004, Visual Neuroscience.

[101]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[102]  F. Rieke,et al.  The impact of photoreceptor noise on retinal gain controls , 2006, Current Opinion in Neurobiology.

[103]  Barry B. Lee,et al.  The spatial structure of cone-opponent receptive fields in macaque retina , 2017, Vision Research.

[104]  R. Shapley,et al.  The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry , 1984, Vision Research.

[105]  Lauren E. Wool,et al.  Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina , 2018, The Journal of Neuroscience.

[106]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.