An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm

The Random-Facet pivoting rule of Kalai and of Matousek, Sharir and Welzl is an elegant randomized pivoting rule for the simplex algorithm, the classical combinatorial algorithm for solving linear programs (LPs). The expected number of pivoting steps performed by the simplex algorithm when using this rule, on any linear program involving n inequalities in d variables, is 2O(√{(n-d),log({d}/{√{n-d}}},), where log n=max{1,log n}. A dual version of the algorithm performs an expected number of at most 2O(√{d,log({(n-d)}/√d},) dual pivoting steps. This dual version is currently the fastest known combinatorial algorithm for solving general linear programs. Kalai also obtained a primal pivoting rule which performs an expected number of at most 2O(√d,log n) pivoting steps. We present an improved version of Kalai's pivoting rule for which the expected number of primal pivoting steps is at most min{2O(√(n-d),log(d/(n-d),)},2O(√{d,log((n-d)/d}},)}. This seemingly modest improvement is interesting for at least two reasons. First, the improved bound for the number of primal pivoting steps is better than the previous bounds for both the primal and dual pivoting steps. There is no longer any need to consider a dual version of the algorithm. Second, in the important case in which n=O(d), i.e., the number of linear inequalities is linear in the number of variables, the expected running time becomes 2O(√d) rather than 2O(√d log d). Our results, which extend previous results of Gartner, apply not only to LP problems, but also to LP-type problems, supplying in particular slightly improved algorithms for solving 2-player turn-based stochastic games and related problems.

[1]  Bernd Gärtner The Random-Facet simplex algorithm on combinatorial cubes , 2002, Random Struct. Algorithms.

[2]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[3]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[4]  Volker Kaibel,et al.  Two New Bounds for the Random-Edge Simplex-Algorithm , 2007, SIAM J. Discret. Math..

[5]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[6]  F. Santos Recent progress on the combinatorial diameter of polytopes and simplicial complexes , 2013, 1307.5900.

[7]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[8]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[9]  Uri Zwick,et al.  A subexponential lower bound for the random facet algorithm for parity games , 2011, SODA '11.

[10]  Bernd Gärtner,et al.  Linear programming and unique sink orientations , 2006, SODA '06.

[11]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  Oliver Friedmann,et al.  An Exponential Lower Bound for the Latest Deterministic Strategy Iteration Algorithms , 2011, Log. Methods Comput. Sci..

[13]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[14]  Uri Zwick,et al.  Subexponential lower bounds for randomized pivoting rules for the simplex algorithm , 2011, STOC '11.

[15]  Tibor Szabó,et al.  Jumping Doesn't Help in Abstract Cubes , 2005, IPCO.

[16]  Michael Goldwasser A survey of linear programming in randomized subexponential time , 1995, SIGA.

[17]  Michael J. Todd,et al.  An Improved Kalai-Kleitman Bound for the Diameter of a Polyhedron , 2014, SIAM J. Discret. Math..

[18]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[19]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[20]  Henrik Björklund,et al.  Combinatorial structure and randomized subexponential algorithms for infinite games , 2005, Theor. Comput. Sci..

[21]  John Fearnley,et al.  Exponential Lower Bounds for Policy Iteration , 2010, ICALP.

[22]  Bernd Gärtner,et al.  Understanding and using linear programming , 2007, Universitext.

[23]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[24]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[25]  Jiří Matoušek,et al.  Lower Bounds for a Subexponential Optimization Algorithm , 1994, Random Struct. Algorithms.

[26]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[27]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..

[28]  Daniel A. Spielman,et al.  A randomized polynomial-time simplex algorithm for linear programming , 2006, STOC '06.

[29]  N. Amenta,et al.  Deformed products and maximal shadows of polytopes , 1996 .

[30]  Kenneth L. Clarkson,et al.  Linear Programming in O(n * (3_d)_2) Time , 1986, Inf. Process. Lett..

[31]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[32]  Robert G. Jeroslow,et al.  The simplex algorithm with the pivot rule of maximizing criterion improvement , 1973, Discret. Math..

[33]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..

[34]  Vladimir Lifschitz,et al.  The Number of Increasing Subsequences of the Random Permutation , 1981, J. Comb. Theory, Ser. A.

[35]  Oliver Friedmann,et al.  A Subexponential Lower Bound for Zadeh's Pivoting Rule for Solving Linear Programs and Games , 2011, IPCO.

[36]  Henrik Björklund,et al.  A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games , 2007, Discret. Appl. Math..

[37]  Tibor Szabó,et al.  Finding the Sink Takes Some Time: An Almost Quadratic Lower Bound for Finding the Sink of Unique Sink Oriented Cubes , 2004, Discret. Comput. Geom..

[38]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[39]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[40]  Uri Zwick,et al.  Random-Facet and Random-Bland require subexponential time even for shortest paths , 2014, ArXiv.

[41]  Peter Bro Miltersen,et al.  Strategy Iteration Is Strongly Polynomial for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor , 2010, JACM.

[42]  Francisco Santos,et al.  A counterexample to the Hirsch conjecture , 2010, ArXiv.

[43]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[44]  Walter Ludwig,et al.  A Subexponential Randomized Algorithm for the Simple Stochastic Game Problem , 1995, Inf. Comput..

[45]  Tibor Szabó,et al.  Unique sink orientations of cubes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[46]  Martin E. Dyer,et al.  A randomized algorithm for fixed-dimensional linear programming , 1989, Math. Program..

[47]  Santosh S. Vempala,et al.  A simple polynomial-time rescaling algorithm for solving linear programs , 2004, STOC '04.

[48]  D. S. Bhusan,et al.  Linear Programming, the Simplex Algorithm and Simple Polytopes , 2010 .

[49]  Nir Halman,et al.  Simple Stochastic Games, Parity Games, Mean Payoff Games and Discounted Payoff Games Are All LP-Type Problems , 2007, Algorithmica.

[50]  Jirí Matousek,et al.  Random edge can be exponential on abstract cubes , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[51]  Gil Kalai Upper bounds for the diameter and height of graphs of convex polyhedra , 1992, Discret. Comput. Geom..

[52]  Uri Zwick,et al.  Improved upper bounds for Random-Edge and Random-Jump on abstract cubes , 2014, SODA.

[53]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[54]  William Y. Sit,et al.  Worst case behavior of the steepest edge simplex method , 1979, Discret. Appl. Math..

[55]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[56]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[57]  V. Chvátal,et al.  Notes on Bland’s pivoting rule , 1978 .

[58]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.