Ab Initio Study of the Properties of Ti2PdFe(Ru)Sb2 Double Half-Heusler Semiconducting Alloys

[1]  D. Bhat,et al.  Asymmetric Thermoelectric Performance Tuning in Low-Cost ZrFexNi1–xSb Double Half-Heusler Materials , 2023, ACS Applied Energy Materials.

[2]  Z. Charifi,et al.  Properties of the double half-heusler alloy ScNbNi2Sn2 with respect to structural, electronic, optical, and thermoelectric aspects , 2023, Solid State Communications.

[3]  Kyu Hyoung Lee,et al.  Atomic site-targeted doping in Ti2FeNiSb2 double half-Heusler alloys: zT improvement via selective band engineering and point defect scattering , 2022, SSRN Electronic Journal.

[4]  S. Pandey,et al.  First-principles study of optoelectronic and thermoelectronic properties of the ScAgC half-Heusler compound , 2022, Physica Scripta.

[5]  Z. Charifi,et al.  Prediction of the electronic structure, optical and vibrational properties of ScXCo2Sb2 (X = V, Nb and Ta) double half-Heusler alloys: a theoretical study , 2022, Indian Journal of Physics.

[6]  Yu Feng,et al.  Electronic structure, magnetism and disorder effect in double half-Heusler alloy Mn2FeCoSi2 , 2022, Journal of Magnetism and Magnetic Materials.

[7]  Kyu Hyoung Lee,et al.  Enhanced Thermoelectric Properties of Ti2FeNiSb2 Double Half‐Heusler Compound by Sn Doping , 2022, Advanced Energy and Sustainability Research.

[8]  Djoudi,et al.  Theoretical Insight into the Stability, Magneto-electronic and Thermoelectric Properties of XCrSb (X: Fe, Ni) Half-Heusler Alloys and Their Superlattices , 2022, Journal of Superconductivity and Novel Magnetism.

[9]  D. Rached,et al.  A comprehensive computational investigations on the physical properties of TiXSb (X: Ru, Pt) half‐Heusler alloys and Ti 2 RuPtSb 2 double half‐Heusler , 2021, International Journal of Quantum Chemistry.

[10]  D. Rached,et al.  The half metallic feature at high temperature of the novel half-Heusler alloys and their [100] oriented layered superlattices: A DFT investigations , 2021, Materials Chemistry and Physics.

[11]  M. Rabah,et al.  First‐principles calculations to investigate structural stabilities, mechanical and optoelectronic properties of NbCoSn and NbFeSb half‐Heusler compounds , 2020 .

[12]  Z. Charifi,et al.  Electronic structure, optical and vibrational properties of Ti2FeNiSb2 and Ti2Ni2InSb double half heusler alloys , 2020 .

[13]  Xiaofang Li,et al.  Enhanced Thermoelectric Properties in p‐Type Double Half‐Heusler Ti2−yHfyFeNiSb2−xSnx Compounds , 2020, physica status solidi (a).

[14]  G. J. Snyder,et al.  Double Half-Heuslers , 2019, Joule.

[15]  G. Fecher,et al.  Elastic properties and stability of Heusler compounds: Cubic Co2YZ compounds with L21 structure , 2019, Journal of Applied Physics.

[16]  G. Madsen,et al.  BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients , 2017, Comput. Phys. Commun..

[17]  G. Fecher,et al.  A Critical Study of the Elastic Properties and Stability of Heusler Compounds: Phase Change and Tetragonal X2YZ Compounds , 2017, 1704.01741.

[18]  Y. Shin,et al.  Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds , 2017, Scientific Reports.

[19]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[20]  Muratahan Aykol,et al.  The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies , 2015 .

[21]  M. Råsander,et al.  On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors. , 2015, The Journal of chemical physics.

[22]  M. Karppinen,et al.  A2B′B″O6 perovskites: A review , 2015 .

[23]  A. D. Corso Pseudopotentials periodic table: From H to Pu , 2014 .

[24]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[25]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[26]  C. Felser,et al.  Half-Heusler compounds: novel materials for energy and spintronic applications , 2012 .

[27]  Dianzhong Li,et al.  Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses , 2011, 1102.4063.

[28]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[29]  V. Belomestnykh The acoustical Grüneisen constants of solids , 2004 .

[30]  H. Marcus,et al.  Elastic constants versus melting temperature in metals , 1984 .

[31]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[32]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[33]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[34]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[35]  G. A. Slack,et al.  Nonmetallic crystals with high thermal conductivity , 1973 .

[36]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[37]  C. Zener Elasticity and anelasticity of metals , 1948 .