Color, pattern, and the retinal cone mosaic

[1]  T Baden,et al.  The Retinal Basis of Vertebrate Color Vision. , 2019, Annual review of vision science.

[2]  E. Chichilnisky,et al.  Probing Computation in the Primate Visual System at Single-Cone Resolution. , 2019, Annual review of neuroscience.

[3]  Donald T. Miller,et al.  Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics , 2019, Proceedings of the National Academy of Sciences.

[4]  Austin Roorda,et al.  Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect? , 2018, Journal of vision.

[5]  N. Cottaris,et al.  A computational observer model of spatial contrast sensitivity: Effects of wavefront-based optics, cone mosaic structure, and inference engine , 2018, bioRxiv.

[6]  William S Tuten,et al.  Sensations from a single M-cone depend on the activity of surrounding S-cones , 2018, Scientific Reports.

[7]  William S Tuten,et al.  Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina , 2017, The Journal of Neuroscience.

[8]  William S Tuten,et al.  The elementary representation of spatial and color vision in the human retina , 2016, Science Advances.

[9]  A. Roorda,et al.  Characterizing the Human Cone Photoreceptor Mosaic via Dynamic Photopigment Densitometry , 2015, PloS one.

[10]  D. Brainard Color and the Cone Mosaic. , 2015, Annual review of vision science.

[11]  Jeremy R. Manning,et al.  Unsupervised Learning of Cone Spectral Classes from Natural Images , 2014, PLoS Comput. Biol..

[12]  David Williams,et al.  Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye , 2014, The Journal of Neuroscience.

[13]  Austin Roorda,et al.  Mapping the Perceptual Grain of the Human Retina , 2014, The Journal of Neuroscience.

[14]  Keith Mathieson,et al.  Retinal Representation of the Elementary Visual Signal , 2014, Neuron.

[15]  S. Shevell,et al.  Chromatic and wavefront aberrations: L-, M- and S-cone stimulation with typical and extreme retinal image quality , 2011, Vision Research.

[16]  David Williams Imaging single cells in the living retina , 2011, Vision Research.

[17]  Austin Roorda,et al.  Adaptive optics for studying visual function: a comprehensive review. , 2011, Journal of vision.

[18]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[19]  Austin Roorda,et al.  Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery , 2010, Optics express.

[20]  Vijay Balasubramanian,et al.  Design of a Trichromatic Cone Array , 2010, PLoS Comput. Biol..

[21]  G. H. Jacobs Evolution of colour vision in mammals , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  Lawrence C. Sincich,et al.  Resolving Single Cone Inputs to Visual Receptive Fields , 2009, Nature Neuroscience.

[23]  Jeremy R. Manning,et al.  Optimal design of photoreceptor mosaics: Why we do not see color at night , 2009, Visual Neuroscience.

[24]  Heidi Hofer,et al.  Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. , 2008, Journal of vision.

[25]  T. Sejnowski,et al.  Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. , 2007, Journal of vision.

[26]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[27]  David Williams,et al.  Different sensations from cones with the same photopigment. , 2005, Journal of vision.

[28]  S. Shevell,et al.  Chromatic assimilation: spread light or neural mechanism? , 2005, Vision Research.

[29]  David Williams,et al.  Organization of the Human Trichromatic Cone Mosaic , 2003, The Journal of Neuroscience.

[30]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  G. H. Jacobs,et al.  Functional consequences of the relative numbers of L and M cones. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[33]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  D. Brainard,et al.  Aberration-free measurements of the visibility of isoluminant gratings. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  David R. Williams,et al.  Spatial reconstruction of signals from short-wavelength cones , 1993, Vision Research.

[36]  David Williams Aliasing in human foveal vision , 1985, Vision Research.

[37]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[38]  David R. Williams,et al.  Punctate sensitivity of the blue-sensitive mechanism , 1981, Vision Research.

[39]  D. Brewster,et al.  XXXVII. On the undulations excited in the retina by the action of luminous points and lines , 1832 .

[40]  Austin Roorda,et al.  Functional Imaging of Cone Photoreceptors , 2016 .

[41]  David H. Brainard,et al.  Handbook of Color Psychology: Fundamentals of color vision I: color processing in the eye , 2015 .

[42]  James V. Stone,et al.  Independent Component Analysis , 2015, Encyclopedia of Biometrics.

[43]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[44]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[45]  David H. Brainard,et al.  The Cost of Trichromacy for Spatial Vision , 1991 .