Fast Fusion Moves for Multi-model Estimation

We develop a fast, effective algorithm for minimizing a well-known objective function for robust multi-model estimation. Our work introduces a combinatorial step belonging to a family of powerful move-making methods like α-expansion and fusion. We also show that our subproblem can be quickly transformed into a comparatively small instance of minimum-weighted vertex-cover. In practice, these vertex-cover subproblems are almost always bipartite and can be solved exactly by specialized network flow algorithms. Experiments indicate that our approach achieves the robustness of methods like affinity propagation, whilst providing the speed of fast greedy heuristics.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Takeo Kanade,et al.  Mode-seeking by Medoidshifts , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[5]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Dorit S. Hochbaum,et al.  Heuristics for the fixed cost median problem , 1982, Math. Program..

[7]  Jan-Olof Eklundh,et al.  Computer Vision — ECCV '94 , 1994, Lecture Notes in Computer Science.

[8]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[9]  Charu C. Aggarwal,et al.  Optimized Crossover for the Independent Set Problem , 1997, Oper. Res..

[10]  Brendan J. Frey,et al.  FLoSS: Facility location for subspace segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[11]  P. Torr Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  David W. Murray,et al.  Guided Sampling and Consensus for Motion Estimation , 2002, ECCV.

[13]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[14]  H. Akaike A new look at the statistical model identification , 1974 .

[15]  Richard S. Stephens,et al.  Probabilistic approach to the Hough transform , 1991, Image Vis. Comput..

[16]  Jiawei Zhang,et al.  Approximation algorithms for facility location problems , 2004 .

[17]  Anton Osokin,et al.  Fast Approximate Energy Minimization with Label Costs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Pushmeet Kohli,et al.  On Detection of Multiple Object Instances Using Hough Transforms , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Hongdong Li,et al.  Two-View Motion Segmentation from Linear Programming Relaxation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Charles U. Martel,et al.  Fast Algorithms for Bipartite Network Flow , 1987, SIAM J. Comput..

[21]  James H. Elder,et al.  Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery , 2008, ECCV.

[22]  Yuri Boykov,et al.  Energy-Based Geometric Multi-model Fitting , 2012, International Journal of Computer Vision.

[23]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[24]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[25]  Miroslav Chlebík,et al.  Crown reductions for the Minimum Weighted Vertex Cover problem , 2008, Discret. Appl. Math..

[26]  Dorit S. Hochbaum,et al.  Approximating Clique and Biclique Problems , 1998, J. Algorithms.

[27]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[28]  P. L. Ivanescu Some Network Flow Problems Solved with Pseudo-Boolean Programming , 1965 .

[29]  Irit Dinur,et al.  The importance of being biased , 2002, STOC '02.

[30]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Tat-Jun Chin,et al.  The Random Cluster Model for robust geometric fitting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Axel Pinz,et al.  Computer Vision – ECCV 2006 , 2006, Lecture Notes in Computer Science.

[33]  David Suter,et al.  Two-view multibody structure-and-motion with outliers through model selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[35]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[36]  Philip H. S. Torr,et al.  Stochastic Motion Clustering , 1994, ECCV.

[37]  Andrew Blake,et al.  Fusion Moves for Markov Random Field Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Éva Tardos,et al.  Approximation algorithms for facility location problems (extended abstract) , 1997, STOC '97.

[39]  Robert E. Tarjan,et al.  Improved Algorithms for Bipartite Network Flow , 1994, SIAM J. Comput..

[40]  Abraham P. Punnen,et al.  A survey of very large-scale neighborhood search techniques , 2002, Discret. Appl. Math..