Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition

[1]  David Poeppel,et al.  The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts , 2015, Nature Neuroscience.

[2]  I. Peretz,et al.  Neural overlap in processing music and speech , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Arafat Angulo-Perkins,et al.  Music listening engages specific cortical regions within the temporal lobes: Differences between musicians and non-musicians , 2014, Cortex.

[4]  Keith Johnson,et al.  Phonetic Feature Encoding in Human Superior Temporal Gyrus , 2014, Science.

[5]  Essa Yacoub,et al.  Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex , 2014, PLoS Comput. Biol..

[6]  Gautham J. Mysore,et al.  A Generative Product-of-Filters Model of Audio , 2013, ICLR.

[7]  Josh H. McDermott,et al.  Cortical Pitch Regions in Humans Respond Primarily to Resolved Harmonics and Are Located in Specific Tonotopic Regions of Anterior Auditory Cortex , 2013, The Journal of Neuroscience.

[8]  Bruno L. Giordano,et al.  Abstract encoding of auditory objects in cortical activity patterns. , 2013, Cerebral cortex.

[9]  R. Goebel,et al.  Processing of Natural Sounds: Characterization of Multipeak Spectral Tuning in Human Auditory Cortex , 2013, The Journal of Neuroscience.

[10]  D. Deutsch,et al.  Speech versus song: multiple pitch-sensitive areas revealed by a naturally occurring musical illusion. , 2013, Cerebral cortex.

[11]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[12]  Nancy Kanwisher,et al.  Sensitivity to musical structure in the human brain. , 2012, Journal of neurophysiology.

[13]  Gregory Hickok,et al.  Orthogonal acoustic dimensions define auditory field maps in human cortex , 2012, Proceedings of the National Academy of Sciences.

[14]  Polina Golland,et al.  Data-driven functional clustering reveals dominance of face, place, and body selectivity in the ventral visual pathway. , 2012, Journal of neurophysiology.

[15]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[16]  A. Friederici The cortical language circuit: from auditory perception to sentence comprehension , 2012, Trends in Cognitive Sciences.

[17]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[18]  Eero P. Simoncelli,et al.  Article Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis , 2022 .

[19]  Nancy Kanwisher,et al.  Functional specificity for high-level linguistic processing in the human brain , 2011, Proceedings of the National Academy of Sciences.

[20]  V. Menon,et al.  Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns. , 2011, Cerebral cortex.

[21]  Mark A. Chevillet,et al.  Functional Correlates of the Anterolateral Processing Hierarchy in Human Auditory Cortex , 2011, The Journal of Neuroscience.

[22]  Gregory Hickok,et al.  Functional Anatomy of Language and Music Perception: Temporal and Structural Factors Investigated Using Functional Magnetic Resonance Imaging , 2011, The Journal of Neuroscience.

[23]  J. Rauschecker,et al.  Cortical Representation of Natural Complex Sounds: Effects of Acoustic Features and Auditory Object Category , 2010, The Journal of Neuroscience.

[24]  Colin Humphries,et al.  Tonotopic organization of human auditory cortex , 2010, NeuroImage.

[25]  M. Escabí,et al.  Spectral and temporal modulation tradeoff in the inferior colliculus. , 2010, Journal of neurophysiology.

[26]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[27]  Aina Puce,et al.  Different categories of living and non-living sound-sources activate distinct cortical networks , 2009, NeuroImage.

[28]  M. Schönwiesner,et al.  Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI , 2009, Proceedings of the National Academy of Sciences.

[29]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[30]  Lee M. Miller,et al.  Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity , 2009, Proceedings of the National Academy of Sciences.

[31]  Noël Staeren,et al.  Sound Categories Are Represented as Distributed Patterns in the Human Auditory Cortex , 2009, Current Biology.

[32]  Maneesh C. Patel,et al.  Perceptual Systems Controlling Speech Production , 2008, The Journal of Neuroscience.

[33]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[34]  S. Lomber,et al.  Double dissociation of 'what' and 'where' processing in auditory cortex , 2008, Nature Neuroscience.

[35]  N. Logothetis,et al.  A voice region in the monkey brain , 2008, Nature Neuroscience.

[36]  J. Rauschecker,et al.  Multiple stages of auditory speech perception reflected in event-related FMRI. , 2007, Cerebral cortex.

[37]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[38]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[39]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[40]  D. Bendor,et al.  The neuronal representation of pitch in primate auditory cortex , 2005, Nature.

[41]  Powen Ru,et al.  Multiresolution spectrotemporal analysis of complex sounds. , 2005, The Journal of the Acoustical Society of America.

[42]  Stefan Koelsch,et al.  Adults and children processing music: An fMRI study , 2005, NeuroImage.

[43]  J. C. Middlebrooks,et al.  Location Coding by Opponent Neural Populations in the Auditory Cortex , 2005, PLoS biology.

[44]  Pascal Belin,et al.  Is voice processing species-specific in human auditory cortex? An fMRI study , 2004, NeuroImage.

[45]  Andrew J Oxenham,et al.  A Neural Representation of Pitch Salience in Nonprimary Human Auditory Cortex Revealed with Functional Magnetic Resonance Imaging , 2004, The Journal of Neuroscience.

[46]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[47]  N. C. Singh,et al.  Modulation spectra of natural sounds and ethological theories of auditory processing. , 2003, The Journal of the Acoustical Society of America.

[48]  R. Patterson,et al.  The Processing of Temporal Pitch and Melody Information in Auditory Cortex , 2002, Neuron.

[49]  R. Zatorre,et al.  Structure and function of auditory cortex: music and speech , 2002, Trends in Cognitive Sciences.

[50]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[51]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[52]  S. Scott,et al.  Identification of a pathway for intelligible speech in the left temporal lobe. , 2000, Brain : a journal of neurology.

[53]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[55]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[56]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[57]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[58]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[59]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[60]  C Hublet,et al.  Functional dissociations following bilateral lesions of auditory cortex. , 1994, Brain : a journal of neurology.

[61]  Eric Moulines,et al.  Voice transformation using PSOLA technique , 1991, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[62]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[63]  R. Moddemeijer On estimation of entropy and mutual information of continuous distributions , 1989 .

[64]  N. C. Silver,et al.  Averaging Correlation Coefficients: Should Fishers z Transformation Be Used? , 1987 .

[65]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[66]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[67]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[68]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[69]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[70]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[71]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[72]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[73]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .